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Weakly interacting particle systems — Gibbs measure

B X afinite set
B N particles on X’ distributed according to a Gibbs measure 7 € P(X™)

1
xeXx™: w(x) :=ﬁexp< )
B Hamiltonian U : X~ — R of mean-field type: 3U : P(X) — R

N
U¥(@) = NU (1Y) with LY () = %;5
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Weakly interacting particle systems — Gibbs measure

B X afinite set
B N particles on X’ distributed according to a Gibbs measure 7 € P(X™)

1
xeXx™: w(x) ::ﬁexp( )
B Hamiltonian U : X~ — R of mean-field type: 3U : P(X) — R

UN(x) = NU (LN(:):)) with LV (x) == %; 5

B Example N N 1 N
UM (z) = ;V(m) + 5 i;lW(mi’xj)
In terms of U
Up) = > paKa(p)  with  Ko(p) = V() + > W(z,y)u
TEX yeEX
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Weakly interacting particle systems — Dynamics

Introduce a reversible dynamic wrt. Gibbs distribution 7
B Single particle jumps

i

2 i=a — (z; —y)e' = (T1,. .., Ti 1,y Tiz1, ..., TN).
B On the level of empirical distributions
i - 1
it LN (x) =v e Py(X) then LN (x™)=p""Y.=p— ~ (O = 8y)
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Weakly interacting particle systems — Dynamics

Introduce a reversible dynamic wrt. Gibbs distribution 7
B Single particle jumps

2 i=a — (z; —y)e' = (T1,. .., Ti 1,y Tiz1, ..., TN).

B On the level of empirical distributions
it LN (x) =v e Py(X) then LN (x™)=0""1Y .=y — —(6,, —6,)

B Make dynamic reversible wrt. 7

QY (m,x) = | T2 AN (LN (x)s) = QN (LN (x); i, y)

T
and {AY, () } ey @ family of irreducible symmetric matrices.
m Generator

LYV =3 (@) = (@) Qg win-

1=1yeXx
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Weakly interacting particle systems — Gradient flow structure

B Free energy for u™¥ € P(AN)
FV() = H (| ) = > palog =
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Weakly interacting particle systems — Gradient flow structure

B Free energy for u™¥ € P(AY)
Fp) =H"(p|7) = Zumlog

zcxN

W Action of p € P(XN) and ¢ € RY"
: 22 w wa:y( ):<'¢»’CN(H)¢>

with weights w2, (1) defined with A(a,b) = (a — b)/(log a — log b) as follows
wly () = A (1QV(@,9). 1, Q" (y.2)) = A (22, 2) Q¥ (@, y)me
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Weakly interacting particle systems — Gradient flow structure

B Free energy for u™¥ € P(AY)
FYw =H"(p|m) = Y pologt®

zexN

W Action of p € P(XN) and ¢ € RY"
: 22 z wa:y( ):<'¢»’CN(H)¢>

with weights w2, (1) defined with A(a,b) = (a — b)/(log a — log b) as follows

w]w\{y(“‘) =A (N'wQN(‘Bv v), quN(y, m)) .
m Metric WY on P(x™)

WY (1) = inf /OAN(c(t),'t/:(t)) dt

(e,)
with the infimum among pairs such that ¢(0) = p, ¢(1) = v and

+Z Py (t) — Pa(t))wa 4 (ct) =0 & é(t) = KN (c(t)p.
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Weakly interacting particle systems — Gradient flow structure

B Free energy for u™¥ € P(XY)

Flp) =H"(n|m) = > umlogf-
zexN
B Actionof p € P(AV) andyp € RY"

AN () = 23 Wy — o) w0y (1) = (5, (0)9)

xz,y
with weights w2, (1) defined with A(a,b) = (a — b)/(log a — log b) as follows
way (k) = A (uwQN(% ), Q" (v, w)) :
m Metric WY on P(X)

N = f/ N dt
Wk, e A w(t)

B N-particle Fisher information

V=5 S wdy () (loa(aQ” (@) ~ loa(1y Q" (3,2)))

(z,y)EEL
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Weakly interacting particle systems — de Giorgi formulation

The evolution of the density ¢ € P(X") satisfies

a(t) =) (ey()Qy.e — ca(t)Quy) = (c(1)Q),

Y

The results of [Maas / Mielke, 2011] show that c is the gradient flow of F~ wrt. W .
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Weakly interacting particle systems — de Giorgi formulation

The evolution of the density ¢ € P(X") satisfies

éa(t) = D (ey(NQye — co()Qu) = ((Q), = — (KN (e() DF " (e(1)))

Y

@

The results of [Maas / Mielke, 2011] show that c is the gradient flow of F~ wrt. W .

Proposition (Curves of maximal slope)

Forc € AC (0,71, (P(XN), W™N)) the function TN given by

TV(e) = FV (e(T)) = F¥ ((0)) / IV (e(t)) dt + - / AV (c(t), $(2)) dt,

is non-negative, where 1 is such that the continuity equation holds. Moreover, a
curve c is a solution to &(t) = ¢(t)Q" if and only if T (c) = 0.
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A class of nonlinear ODEs

B Gibbs measures {m(u) € P(X)} ep(x)

0
= B

7)) = o exp(—Ha (1)), With H.(u)

Z(p) U(p), and U(p) = > paKa(p).

TEX
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A class of nonlinear ODEs

B Gibbs measures {m(u) € P(X)} ep(x)

0
= B

() = %exm—mm», with (1)

B Q(u) reversible rates wrt. 7(u)

Un), and U(p) = D paka(p).

TEX

Qaoy(p) = :y EZ; Agy(n)  with A(u) € RY*¥ irreducible and symmetric.
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A class of nonlinear ODEs

B Gibbs measures {m(u) € P(X)} ep(x)

0

exp(—Hq (1)), with Ha(p) = £

Un), and U(p) = D paka(p).

TEX

1
o (p) = m

B Q(u) reversible rates wrt. 7(u)

Qaoy(p) = :y EZ; Agy(n)  with A(u) € RY*¥ irreducible and symmetric.

B nonlinear ODE for ¢ € C*([0, T], P(X))

éa(t) = (ey(t) Quale(t) — o (t) Quy(e(1))) = (c(t) Q(e(t)),

y#w
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A class of nonlinear ODEs

B Gibbs measures {m(u) € P(X)} ep(x)

O U, and Un) = 3 pmeka(p).

aﬂx reX

() = %exm—m(m), with (1)
B Q(u) reversible rates wrt. 7(u)

Quy(p) = :y EZ; Agy(p)  with A(p) € RY*% irreducible and symmetric.

B nonlinear ODE for ¢ € C*([0, T], P(X))
éa(t) = Y (es(t) Qua(e(t)) = calt) Quy(e(1))) = (e(t) Q(e(1)),

YF#T

B Stationary states «* are fixed points of
e w(p) (™) =n".

Not necessarily unique!
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A class of nonlinear ODEs — Gradient flow

Free energy 7 : P(X) = R
F(p) = palog piz + U(p).
TeX

Note: F(u) # H(w | m(p)). However 8, F (1) = log &< + 1 — log Z ().

T (1)
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A class of nonlinear ODEs — Gradient flow

Free energy 7 : P(X) = R

F(p) = palog piz + U(p).

TEX

Note: F(u) # H(w | m(p)). However 8, F (1) = log &< + 1 — log Z ().

T (1)

Onsager operator K : RY — R™ defined for ) € R by

(K(0))e =Y way (1) (e —y)  With  way (1) := A Quy (1), 1y Qya (1)
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A class of nonlinear ODEs — Gradient flow

Free energy F : P(X) - R

F(p) = palog piz + U(p).

TEX

Note: F(u) # H(w | m(p)). However 8, F (1) = log ity +1—1log Z ().

Onsager operator K : RY — R™ defined for ) € R by

(K(0))e =Y way () (e — ) With  way (1) = A Quy (1), 114 Qye (1))

Formal gradient flow

¢(t) = —K(c(t)) DF(c(t))-
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A class of nonlinear ODEs — Gradient flow

Free energy F : P(X) - R

F(p) = palog piz + U(p).

TEX

Note: F(u) # H(p | w(p)). However 9., F (1) = log — b5 +1—log Z ().

Onsager operator K : RY — R™ defined for ) € R by

W)a = D way (1) (e —1y)  With  way (1) = Az Quy (), 1y Qe (1))

Formal gradient flow

¢(t) = —K(c(t)) DF(c(t))-
Dissipation:

L F(elt) = ~T(e(t)) = szy (1082 Qs (¢)) — Tog(cy Qe (€)))*
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A class of nonlinear ODEs — de Giorgi formulation

Proposition (Metric)

The space (P(X), W) with the metric defined by

v €P@X): Wi(v) = inf {/.Ac(t }
where fori) € R
Ale,¥) := (i, K szy — y)?
and (c, 1) solves
(t) = K(c(®)w(t) with c(0)=p and c(1) =,

is a complete separable metric space.
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A class of nonlinear ODEs — de Giorgi formulation

Proposition (Metric)

The space (P(X), W) with the metric defined by

Ly EeP@): WA, :_mf{/A }

where forip) € R
Ale,9) = ($,K Z Way(€) (o — y)?

is a complete separable metric space.

Proposition (Curves of maximal slope)
For any (c(t))tepo,r; € AC ([0, T], (P(X),W)) holds

T(e) == F(e(T)~F(e(0)) + 5 /0 ) dt + = / Ale )dt >0

Moreover, J(c) = 0 if and only if ¢ = cQ(c). In this case c(t) € P*(X) forallt > 0.
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A class of nonlinear ODEs - Liouville equation

m Since L) u™ € P(Pn (X)), a lifting of the die ODE from P(X) to P(P(X)) is
necessary to make it compatible
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A class of nonlinear ODEs - Liouville equation

m Since L) u™ € P(Pn (X)), a lifting of the die ODE from P(X) to P(P(X)) is
necessary to make it compatible
B For randomized initial data law ¢(0) = C(0) € P(P(X)) holds

0:C(t,c) + divp(xy (C(t,c) cQ(c)) =0. (Lio)
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A class of nonlinear ODEs - Liouville equation

m Since L) u™ € P(Pn (X)), a lifting of the die ODE from P(X) to P(P(X)) is
necessary to make it compatible
B For randomized initial data law ¢(0) = C(0) € P(P(X)) holds

9C(t,c) — divpx) (C(t,c)K(c)DF(c)) = 0. (Lio)
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A class of nonlinear ODEs - Liouville equation

m Since LY p™ € P(Pn (X)), alifting of the die ODE from P(X) to P(P(X)) is
necessary to make it compatible
B For randomized initial data law ¢(0) = C(0) € P(P(X)) holds

9C(t,c) — divpx) (C(t,c)K(c)DF(c)) = 0. (Lio)

B free energy F, action A, Fisher information | are defined as averages of their
unlifted counterparts:

F(C) = / F(v) Cdv).
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A class of nonlinear ODEs - Liouville equation

m Since LY p™ € P(Pn (X)), alifting of the die ODE from P(X) to P(P(X)) is
necessary to make it compatible
B For randomized initial data law ¢(0) = C(0) € P(P(X)) holds

9C(t,c) — divpx) (C(t,c)K(c)DF(c)) = 0. (Lio)

B free energy F, action A, Fisher information | are defined as averages of their
unlifted counterparts:

:P(X) - RY /A ) C(dv).
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A class of nonlinear ODEs - Liouville equation

m Since LY p™ € P(Pn (X)), alifting of the die ODE from P(X) to P(P(X)) is
necessary to make it compatible
B For randomized initial data law ¢(0) = C(0) € P(P(X)) holds

9C(t,c) — divpx) (C(t,c)K(c)DF(c)) = 0. (Lio)

B free energy F, action A, Fisher information | are defined as averages of their
unlifted counterparts:

I(C) := /z(y) C(dv) = A(C, —DF(C)).
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A class of nonlinear ODEs - Liouville equation

m Since LY p™ € P(Pn (X)), alifting of the die ODE from P(X) to P(P(X)) is
necessary to make it compatible
B For randomized initial data law ¢(0) = C(0) € P(P(X)) holds

9C(t,c) — divpx) (C(t,c)K(c)DF(c)) = 0. (Lio)

B free energy F, action A, Fisher information | are defined as averages of their
unlifted counterparts:

I(C) := /z(y) C(dv) = A(C, —DF(C)).

B Consistency of definition of metric

W(M,N) := 1nf/ ), ) dt = WW(M N) 1nf/W w,v) (dp,dv).
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A class of nonlinear ODEs - Liouville equation

m Since LY p™ € P(Pn (X)), alifting of the die ODE from P(X) to P(P(X)) is
necessary to make it compatible
B For randomized initial data law ¢(0) = C(0) € P(P(X)) holds

9C(t,c) — divpx) (C(t,c)K(c)DF(c)) = 0. (Lio)

B free energy F, action A, Fisher information | are defined as averages of their
unlifted counterparts:

I(C) := /z(y) C(dv) = A(C, —DF(C)).

B Consistency of definition of metric

W(M,N) := 1nf/ ), ) dt = WW(M N) 1nf/W w,v) (dp,dv).

and J(C) = 0if and only if C solves (Lio).
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Passage to the limit — Overview and Strategy

Master equation X{¥ Markov (£~ , x™) c € AC ([0, 1], (P(XN), W)
é(t) = —ICN (c(t)) DHN (c(t) | m) 2L IN(e)=0
YLy ey
CY Markov (LN, Py (X)) CY € AC ([0, T, (P(Pn(X)),W"))
IN = oo IN > oo
Liouville equation for ODE on P(X) C € AC([0,T], (P(P(X)),W))
0:C(t,v) = divp(x) (C(t,v)KDF) =2 J(C) =0
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Passage to the limit — Overview and Strategy

Master equation X{¥ Markov (£~ , x™) c € AC ([0, 1], (P(XN), W)
é(t) = —ICN (e(t) DHN (e(t) | w)  “E20 TN(e)=0
YLy ey
CY Markov (LN, Py (X)) CY € AC ([0, T, (P(Pn(X)),W"))
I N — o0 I N = o0
Liouville equation for ODE on P(X) C € AC([0,T], (P(P(X)),W))
0:C(t,v) = divp(x) (C(t,v)KDF) =2 J(C) =0

Proof I-lim inf estimate for J~ wrt. J, whenever LY ¢ < C on [0, 7]

liminf JV (¢) > J(C).
N—co
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Passage to the limit — Abstract theorem

Theorem (Sandier-Serfaty)
Assume that whenever a sequence ¢ € AC ([0, T, (P(X™), W™N)) fort € [0,T] it
holds LY ™ (t) % C(t) € P(P(X)) and

g %}'N(CN(T)) > F(C(T)) — Fo  with Fo € R. (A0)

N—o0
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Passage to the limit — Abstract theorem

Theorem (Sandier-Serfaty)

2
2

Assume that whenever a sequence c™ € AC ([0, T, (P(x™), W™)) fort € [0, T]
holds LY ™ (t) % C(t) € P(P(X)) and

liminf —FY (N (T)) > F(C(T)) = Fo  with Fo € R. (A0)
N—ooo N
In addition, assume it holds
T
lim inf — / AN (e N (t)) dt > / A(C(t), (1)) dt, (A1)
0
where (¢, ™) and (C(t), (t)) are solutions of certain continuity equations.
.l N, N
lmlgof ﬁl- (e (1)) = I(C(1)). (A2)
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Passage to the limit — Abstract theorem

Theorem (Sandier-Serfaty)

2
2

Assume that whenever a sequence c™ € AC ([0, T, (P(x™), W™)) fort € [0, T]
holds LY e (t) % C(t) € P(P(X)) and

liminf —FY (N (T)) > F(C(T)) = Fo  with Fo € R. (A0)
N—ooo N
In addition, assume it holds
T
lim inf — / AN (e N (t)) dt > / A(C(t), (1)) dt, (A1)
0
where (¢, ™) and (C(t), (t)) are solutions of certain continuity equations.
.l N, N
lmlgof ﬁI (e (1)) = I(C(1)). (A2)

Then, whenever 7™ (¢V) = 0 and ¢ (0) = C(0) such that
limpy 00 FY (e (0)) = F(C(0)) — Fo, it holds I(C) = 0 and

ve.T): Jim LFY (e (1) = FCO) - Fo.

N—oco
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Passage to the limit — Verification of assumptions |

Proposition (lim inf-estimate for free energy)

If LY u™ % M, then

Jim A | ) > / (F(v) — Fo) M(dv) = F(M) — Fo,  (A0)

P(X)
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Passage to the limit — Verification of assumptions |

Proposition (lim inf-estimate for free energy)

If LY u™ % M, then

Jim W (2 [0 = Fo) M) = F R a0

Proof: Decompose relative entropy

1 Ny _~N)_ 1 N 1 N
NH(;L |7 )—N'H(/L )+ ELyun[U] + - log Z
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Passage to the limit — Verification of assumptions |

Proposition (lim inf-estimate for free energy)

If LY u™ % M, then

. 1 N
Jim AN | ) > /P o FO) = F) M) =F(W) = Fa, (A0)

Proof: Decompose relative entropy
S (7)) = SHWY) + By U]+ + log 27
N N Lyw N

Decompose entropy by using Tn (v) = {@ € XV : LY (x) = v}

A = }VELN s [H (M- LY = )| 117501

+ N?—l (Lg,ﬂ ‘ 1/ |7>N(X)|) - %logmv(?f)l

1
~ % By log | Tx ()]
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Passage to the limit — Verification of assumptions |

Proposition (lim inf-estimate for free energy)

If LY u™ % M, then

Jim W (2 [0 = Fo) M) = F R a0

Proof: Decompose relative entropy
S (7)) = SHWY) + By U]+ + log 27
N N Lyw N

Decompose entropy by using Tn (v) = {@ € XV : LY (x) = v}

1 N 1 1
— > _
N AT = = log [P (X))

~ Eryun llog|Twl]
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Passage to the limit — Verification of assumptions |

Proposition (lim inf-estimate for free energy)

If LY u™ % M, then

Jim L | ) > /P o FO) = Fo) M) =FM) = Fo. (A0)

Proof: Decompose relative entropy
S (7)) = SHWY) + By U]+ + log 27
N N Lyw N

Decompose entropy by using Tn (v) = {@ € XV : LY (x) = v}

1 N 1 1
N HWT) 2 =5 log[Pn(X)| = 7 Epy v [log T |]
. dlog N log(N + 1)
Stirling > — N T ELyuy [Hpx)(e)] — N
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Passage to the limit — Verification of assumptions |

Proposition (lim inf-estimate for free energy)

If LY u™ % M, then

Jim W (2 [0 = Fo) M) = F R a0

Proof: Decompose relative entropy
S (7)) = SHWY) + By U]+ + log 27
N N Lyw N

Decompose entropy by using Tn (v) = {@ € XV : LY (x) = v}

1 N 1 1

— > _

N AW 2~ log [P ()| =
dlog N

N T Eryuy [(Hp(x)(e)] —

By [log|Tw]

log(N + 1)
N

Stirling > —

. N _
A}gnooﬁlogZ = inf

By Sanov’s Theorem:
veEP(X) {

Z v(z)logv(z) + U(I/)} =: —Fo.

TEX
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Passage to the limit — Sketch of the proofs Il

Proposition (Convergence of metric derivative and slopes)

Letc™ € AC([0,T], (P(X™), W™)) with (¢, ™) solving the continuity equation.
If

LY¥eN ¢ for some measurable C : [0,T] — P(P(X)),

such that "
limsup/ A (e (1), ™ (1)t < oo,
0

N— o0

ThenC € AC ([0, T], P(P(X))), and itexists : [0,T] x P(X) — R™Y, for which
(C, ) solves the continuity equation and it holds

Byt / T L AN ), " (1)t > / T ACH), (1) dt (A1)
N — oo 0 N ’ - 0 ’
and T -
lygnnf | < IV (cN(t)) dt > /O 1(C(t)) dt. (A2)
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Passage to the limit — Result

Previous results + tightness for particle system imply:

Theorem (Convergence of the particle system to the mean field equation)

Letc™ be the law of the N -particle system. Moreover assume its initial distribution to
be well prepared

%f”(cN(O)) —F(C(0)-Fo  with LYeV(0)5C(0) asN — oo

Then it holds
LN () S ct)  forallt € (0,00),

with C a weak solution to (Lio) and moreover

%}-N(CN@)) S F(C{)—Fo  forallt € (0, 00).
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Passage to the limit — Result

Previous results + tightness for particle system imply:

Theorem (Convergence of the particle system to the mean field equation)

Letc™ be the law of the N -particle system. Moreover assume its initial distribution to
be well prepared

%f”(cN(O)) —F(C(0)-Fo  with LYeV(0)5C(0) asN — oo

Then it holds
LN () S ct)  forallt € (0,00),

with C a weak solution to (Lio) and moreover
%}'N(CN(t)) SFC(H) = Fo  forallt € (0,00).
Similar results in this spirit:

[Fathi, Simon 2015] Hydrodynamic limit for simple exclusion process
[Mielke 2014] On evolutionary Gamma convergence for gradient systems
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k-convexity — Motivation

Definition (x-convexity wrt. V)

{Qu) € RXXX}HGP(X) is k-convex with x € R, if for any constant speed geodesic
c € AC([0,1], (P(X), W)) holds
t(1—t)

Fle(t)) < (1 =) F(c(0) + tF(c(t) — %TWQ(C(O), c(1))-
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k-convexity — Motivation

Definition (x-convexity wrt. V)

{Qu) € RXXX}HGP(X) is k-convex with x € R, if for any constant speed geodesic
c € AC([0,1], (P(X), W)) holds

Fle®) < (1 =)F(e(0)) + tF(c(t) — &

Corollary (Two-point space)

Assume X = {0,1}, p(p) := Q(1;0,1) and q(p) := Q(w; 1,0) as well as
P’ (1) = Ouop(1) and g’ (p) = Oy, q(1) then the r is give by

K= Heig(fx) <’W + 3 (u(0)p' (1) + p(1)g' (1))

+A<uop<u>,u1q<u>>( Lo _p’(u)_q’(u))>_

2u0)p(p)  2p(Da(p)  plr)  a(p)

For p’ = ¢’ = 0, formula reduces to the one obtained by [Maas, 2011].
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k-convexity — Curie-Weiss model

Mean-field Ising model on X = {0, 1}. Define potentials by
V(0)=V(1) =W(0,0) = W(1,1) =0and W(0,1) = W(1,0) = 8 > 0. Hence
Ko(p) = Bpa, K1(p) = Bpo and so

Fw)= > (log o + Ko(1)) pto = polog po + p1 log p1 + 2Buopr.
oce{0,1}

As a function F : P(X) — R is convex for 5 < 1.
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k-convexity — Curie-Weiss model

Mean-field Ising model on X = {0, 1}. Define potentials by
V(0)=V(1)=W(0,0) =W(1,1) =0and W(0,1) = W(1,0) = 8 > 0. Hence
Ko(p) = Bpa, Ki(p) = Bpo and so

Fw)= > (log o + Ko(1)) pto = polog po + p1 log p1 + 2Buopr.
oce{0,1}

As a function F : P(X) — R is convex for 5 < 1.

Does the same holds for x-convexity wrt. WW?
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k-convexity — Curie-Weiss model

Mean-field Ising model on X = {0, 1}. Define potentials by
V(0)=V(1)=W(0,0) =W(1,1) =0and W(0,1) = W(1,0) = 8 > 0. Hence
Ko(p) = Bpa, Ki(p) = Bpo and so

Fw)= > (log o + Ko(1)) pto = polog po + p1 log p1 + 2Buopr.
oce{0,1}

As a function F : P(X) — R is convex for 5 < 1.
Does the same holds for x-convexity wrt. WW?
For the dynamic use for instance Metropolis rates:
puc(p) = exp (=2B8(u(0) — pn(1))+)  quo(p) = exp (=28(u(1) — p(0))+)

is k-convex wrt. W with
kme(B) <2 —28.
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Questions and open problems

Kk-convexity.

B Proof lower bound in kpc(8) =2 — 28
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Questions and open problems

Kk-convexity.
B Proof lower bound in kpc(8) =2 — 28
B Connect k -convexity of N-particle system with x-convexity of limit system:
Easy:
lim " <k
N— o0

Hard: Quantified comparison

k=r" +on(1).
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Questions and open problems

Kk-convexity.
B Proof lower bound in kpc(8) =2 — 28

B Connect k -convexity of N-particle system with x-convexity of limit system:
Easy:

. N
lim kv <k
N —o00

Hard: Quantified comparison
k=r" +on(1).

Passage to the Limit.

B Second order approximation of the N-particle system
= Fokker-Planck equation
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Questions and open problems

Kk-convexity.
B Proof lower bound in kpc(8) =2 — 28

B Connect k -convexity of N-particle system with x-convexity of limit system:
Easy:

. N
lim kv <k
N —o00

Hard: Quantified comparison
k=r" +on(1).

Passage to the Limit.

B Second order approximation of the N-particle system
= Fokker-Planck equation

B Quantify the rate of convergence in N
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Questions and open problems

Kk-convexity.

B Proof lower bound in kpc(8) =2 — 28

B Connect k -convexity of N-particle system with x-convexity of limit system:

Easy:

. N
lim kv <k
N —o00

Hard: Quantified comparison

k=r" +on(1).

Passage to the Limit.

B Second order approximation of the N-particle system
= Fokker-Planck equation

B Quantify the rate of convergence in N
B Apply to stronger interacting particle systems, like Kac-Ising models
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