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CONVERGENCE RATES FOR UPWIND SCHEMES WITH ROUGH
COEFFICIENTS∗

ANDRÉ SCHLICHTING† AND CHRISTIAN SEIS†

Abstract. This paper is concerned with the numerical analysis of the explicit upwind finite
volume scheme for numerically solving continuity equations. We are interested in the case where
the advecting velocity field has spatial Sobolev regularity and initial data are merely integrable.
We estimate the error between approximate solutions constructed by the upwind scheme and dis-
tributional solutions of the continuous problem in a Kantorovich–Rubinstein distance, which was
recently used for stability estimates for the continuity equation [C. Seis, Ann. Inst. H. Poincaré
Anal. Non Linéaire, https://doi.org/10.1016/j.anihpc.2017.01.001]. Restricted to Cartesian meshes,
our estimate shows that the rate of weak convergence is at least 1/2 in the mesh size. The proof
relies on a probabilistic interpretation of the upwind scheme [F. Delarue and F. Lagoutière, Arch.
Ration. Mech. Anal., 199 (2011), pp. 229–268]. We complement the weak convergence result with an
example that illustrates that for rough initial data no rates can be expected in strong norms. The
same example suggests that the weak 1/2 rate is optimal.
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1. Introduction. This paper is concerned with the numerical analysis of the ex-
plicit upwind finite volume scheme for solving linear conservative transport equations.
We are interested in situations in which the coefficients in the equation are rough but
still within the range in which the associated Cauchy problem is well-posed. To be
more specific, we consider nearly incompressible advecting velocity fields with spatial
Sobolev regularity and configurations that are integrable but not necessarily bounded.
This is the setting studied by DiPerna and Lions in their original paper [12].

The goal of this work is an estimate of the error of the numerical scheme. In our
main result, we show that the rate of convergence of the approximate solution given
by the explicit upwind scheme toward the unique weak solution of the continuous
problem is at least 1/2 in the mesh size, uniformly in time. Our bound is valid for
uniform Cartesian meshes1 only, but possible extensions to more general meshes are
discussed. To measure the numerical error we use nonstandard distances from the
theory of optimal mass transportation which appear to be natural in the context of
continuity equations [22, 23, 24]. As these distances metrize weak convergence, the
present paper provides a bound on the rate of weak convergence. We will moreover see
that, in general, strong convergence rates cannot be expected for rough initial data.
In this sense, the choice of weak convergence measures is optimal. Our computations,
moreover, suggest that the 1/2 rate is sharp.

Considering coefficients under low regularity assumptions appears to be natural
in the context of fluid dynamics, for instance, for problems described by compressible
or incompressible inhomogeneous Navier–Stokes equations, or engineering questions
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related to fluid mixing, which attracted much interest recently [26]. The present
work can be considered as a first step toward the error analysis of numerical schemes
approximating model problems that feature more general (also nonlinear) transport
phenomena with rough coefficients.

Part of our analysis is built on a probabilistic interpretation of the upwind scheme
similar to the one discussed by Delarue and Lagoutière in [9] (in the context of Lips-
chitz vector fields) and the canonical representation of approximate solutions by the
flow map induced by it. This interpretation recently guided the duo jointly with
Vauchelet to new error estimates for the upwind scheme modeling transport with
(one-sided) Lipschitz vector fields [10]. In a certain sense, the present work com-
bines ideas from these two works with some novel stability estimates for continuity
equations recently obtained in [23]. (See also [24] for optimal estimates.)

Outline of the paper. In section 2, we introduce the continuous model and the
upwind finite volume scheme; we present and discuss our main result and illustrate
it by numerical simulations. Properties of the continuous model are collected in sec-
tion 3. Section 4 contains a brief summary of tools from optimal mass transportation
that are relevant in the analysis. In section 5, we derive properties of the numerical
scheme. Section 6 is devoted to the proof of the error estimates. In section 7 we
propose an example which suggests the optimality of our main result. We conclude
this paper with a discussion in section 8.

2. Setting and results. Since most our our error analysis is conducted for
arbitrary (though regular) mesh geometries, we will in the following present the setting
for general meshes. Whenever our argumentation is restricted to Cartesian meshes
this will be emphasized. This strategy allows the reader to easily identify the obstacles
that have to be overcome in order to generalize our result and is thus advantageous
for future research. Again, we caution the reader that our main result is valid for
Cartesian meshes only.

2.1. The continuous problem. Let Ω be a bounded polyhedral domain in Rd.
The conservative transport of a quantity ρ with initial configuration ρ0 by a vector
field u is modeled by the Cauchy problem for the continuity equation

(1)

{
∂tρ+∇ · (uρ) = 0 in [0, T ]× Ω,

ρ(0, · ) = ρ0 in Ω.

We are interested in vector fields with no flux across the boundary of the domain,

(2) u · ν = 0 on ∂Ω,

where ν denotes, as usual, the outward normal on ∂Ω. The set of equations is chosen
in such a way that the total “mass”

∫
ρ dx is (formally) conserved.

It is well known that in the case of smooth vector fields, solutions can be con-
structed via the method of characteristics. Out of the smooth setting, the analytical
treatment of the equation was initiated by DiPerna and Lions [12], who developed
the theory of so-called renormalized solutions. The authors derive uniqueness and
stability properties of renormalized solutions and show that distributional solutions
are renormalized if the advecting velocity field satisfies certain regularity assumptions.
These are u ∈ L1((0, T );W 1,p(Ω)) with (∇ · u)− ∈ L1((0, T );L∞(Ω)), where we have
used the superscripted minus sign to denote the negative part of a number. In the fol-
lowing, a solution of (1) will always be the unique distributional solution constructed
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in [12]. The DiPerna–Lions theory was later extended to vector fields with bounded
variation regularity u ∈ L1((0, T );BV (Ω)) by Ambrosio [2].

Stability estimates for the continuity equation are very recent. In [23], the second
author chose an optimal transportation approach that yields quantitative estimates
for the distance of two solutions corresponding to nearby velocity fields and nearby
initial configurations. The optimality of this approach is discussed in [24]. The latter
works mirror analogous results in the Lagrangian framework derived earlier by Crippa
and De Lellis in [8]. In these quantitative estimates, however, the case p = 1 (and
also BV ) is excluded.

The present work builds up on [23]: We study the distance between approximate
solutions constructed by the explicit finite volume upwind scheme—a numerical ap-
proximation of (1)—and the unique weak solution to the original problem. An upper
bound on this distance thus serves as an estimate for the numerical error. As in [8]
and [23], we need to restrict to the case p > 1.

Because our numerical scheme is explicit, a stability condition has to be imple-
mented, which requires to control the velocity field uniformly in space. We thus
impose in addition that u ∈ L1((0, T );L∞(Ω)).

2.2. The numerical scheme. The upwind finite volume scheme is the most
classical, stable, and monotone numerical approximation of the continuity equation
(1) (see, e.g., [14, 18]). It is formulated on a tessellation of the physical space Ω and
describes the evolution of cell averages by means of the flux over the cell boundaries.

Even though our result will be valid for Cartesian meshes only, we start with the
description of the upwind scheme for quite general mesh geometries. In fact, most
parts of our analysis hold true for general meshes. For this reason, we will work under
weaker assumptions in the majority of the paper and restrict to the Cartesian setting
only where needed. Our hope is to remove this restriction in some future work.

We consider a tessellation T of the domain Ω, that is, T is a family of closed,
connected polyhedral subsets (called control volumes or, simply, cells) of Rd with
disjoint interiors and such that Ω =

⋃
K∈T K. The surface of each control volume

K ∈ T consists of finitely many flat, closed, and connected (d− 1)-dimensional faces.
If K and L are two neighboring control volumes, we write K ∼ L. In this case, we
use the notation K |L to denote the joint edge of K and L and use |K |L| to denote its
(d− 1)-dimensional Hausdorff area Hd−1(K |L). Moreover, the outward normal on K
at the edge K |L will be denoted by νKL, so that νKL = −νLK . On any edge K |L, we

define the relative inverse length scale τKL = |K|L|
|K| , where by abuse of notation |K|

is the usual d-dimensional volume of the control element K. Finally, the mesh size h
is the maximal diameter of the volumes

h = max
K∈T

diamK.

It is necessary to ensure a certain uniform regularity of the mesh, which essentially
guarantees that the control volumes do not degenerate as h → 0. On the level of
the numerical analysis presented below, this regularity assumption must imply that
geometrical constants in estimates remain bounded as h → 0. More precisely, we
assume that there exists a constant C > 0 such that the trace estimate

(3) ‖f‖L1(∂K) ≤ C
(
‖∇f‖L1(K) + h−1‖f‖L1(K)

)
holds true uniformly as h→ 0 for any function f and any cell K ∈ T . The proof of the
trace estimate is fairly standard and can be found, for instance, in [13, Chapter 4.3].
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An immediate consequence of this estimate with f ≡ 1 is the uniform isoperimetric
property of the control elements

(4) max
K∈T

|∂K|
|K|

≤ C

h
.

For a fixed time step size δt specified in (10) and (11) below, we choose N ∈ N
such that Nδt ≤ T and set tn = nδt for any n ∈ J0, NK. Here and in the following,
we use the notation Ja, bK = [a, b] ∩N0, where N0 = {0, 1, 2, . . .} are the nonnegative
integers.

We discretize the initial datum ρ0 by assigning to each control volume K ∈ T the
mean of ρ0 over that volume, i.e.,

(5) ρ0
K = −

∫
K

ρ0 dx.

The upwind scheme takes into account only the flow over the edges. For each L ∼ K,
we consider the net outflow over K |L per time interval

[
tn, tn+1

]
,

(6) unKL = −
∫ tn+1

tn
−
∫
K|L

u · νKL dHd−1 dt.

Following the sign conventions for the outward normals, we will sometimes use the
antisymmetric relation unKL = −unLK . We will furthermore distinguish between the
flows into the control volumes and those out of the control volumes. Hence, for
L ∼ K, we write un+

KL = (unKL)+ and un−KL = (unKL)−, where (q)+ = max{0, q} and
(q)− = −min{0, q} denote the positive and the negative part of the quantity q ∈ R,
respectively.

With these preparations, we are now in the position to introduce the explicit
upwind finite volume scheme. For n ∈ J0, NK and K ∈ T , we define iteratively

(7) ρn+1
K = ρnK − δt

∑
L∼K

τKL
(
un+
KLρ

n
K − un−KLρ

n
L

)
.

Let us stress that due to the no flux condition (2), there are no boundary terms
present in (7). It will be beneficial for our probabilistic interpretation to rewrite the
upwind scheme using the identities un−KL = un+

LK and |K|τKL = |L|τLK as

(8) |K|ρn+1
K =

∑
L∈T
|L|ρnLpnLK ,

where pnKL, defined by

(9) pnKL :=


1− δt

∑
L∼K τKLu

n+
KL if L = K,

δt τKL u
n+
KL if L ∼ K,

0 else,

will play the role of transition probabilities. It is a well-known fact that the upwind
scheme is stable, if δt is chosen according to the Courant–Friedrichs–Lewy (CFL)
condition

(10)
∑
L∼K

pnKL = δt
∑
L∼K

τKLu
n+
KL ≤ 1.

for all K ∈ T . We will recall the proof of stability in Lemma 5.2 below. For our
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analysis, it will be convenient to impose a slightly stronger condition, which does not
depend on the mesh. Therefore, we demand for some finite constant C

(11) max
n∈J0,NK

δt un∞ ≤ Ch, where un∞ := −
∫ tn+1

tn
‖u‖L∞ dt,

which in a certain sense is sufficient for (10) in the case of Sobolev vector fields
(cf. Lemma 5.1). The latter condition in particular implies that in every time step
the maximal length of each path line is at most of order h (see, e.g., the proof of
Lemma 6.1).

The approximate solution ρh is defined in such a way that

(12) ρh(t, x) = ρnh(x) = ρnK for almost every (t, x) ∈ [tn, tn+1)×K.

We will also write ρ0
h = ρh(0, · ) for the approximate initial datum.

2.3. Main results. In the following, we describe and interpret our main result.
As announced in the previous subsection, our results are valid for Cartesian meshes
only. It is thus necessary to restrict the admissible geometries for the domain Ω. We
call Ω compatible to Cartesian tessellations, if it is a finite disjoint union of isometric
axis-parallel rectangular boxes. In this case, Ω can be covered by control volumes
K ∈ T , which are of the form K = [a1, a1 + h1]× · · · × [ad, ad + hd] with edge lengths
hi satisfying h ≤ Chi uniformly in h. The latter condition is equivalent to (3) via (4).

We are now in the position to state our main result.

Theorem 2.1. Suppose that Ω is a bounded domain in Rd that is compatible to
Cartesian tessellations.

Let p ∈ (1,∞] and q ∈ [1,∞) be dual Hölder exponents, i.e., 1/p + 1/q = 1. Let
u : [0, T ]× Ω→ Rd be such that

(13)


u ∈ L1((0, T );L∞(Ω)),

∇u ∈ L1((0, T );Lp(Ω)),

(∇ · u)− ∈ L1((0, T );L∞(Ω)),

u · ν = 0 on ∂Ω,

and let ρ0 : Ω→ R be such that

ρ0 ∈ Lq(Ω).

Let ρ, ρh : [0, T ] × Ω → R denote, respectively, the solution to the continuity
equation (1) and the approximate solution defined by the explicit upwind finite volume
scheme (5), (6), (7), (12) on a Cartesian mesh with mesh size h. Suppose that the
CFL conditions (10) and (11) are satisfied.

Then there exists a constant C such that for any r > 0 and any t ∈ [0, T ], it holds
that

(14)

inf
π∈Π(ρ(t,·),ρh(t,·))

∫∫
log

(
|x− y|
r

+ 1

)
dπ(x, y)

≤ C

(
1 +

√
h‖u‖L1(L∞) + h

r

)(
‖ρ0‖L1 + Λ

1
p ‖ρ0‖Lq ‖u‖L1(W 1,p)

)
,

where Λ = exp(‖(∇ · u)−‖L1(L∞)).
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Here we have dropped the dependency of norms on the domains for notational
convenience. For instance, L1(Lp) = L1((0, T );Lp(Ω)). We will stick to this conven-
tion in the following. In the case where Ω is convex, the term ‖u‖L1(W 1,p) can be
replaced by ‖∇u‖L1(Lp), which is consistent with regard to dimensions.

The statement involves the notion of a Kantorovich–Rubinstein distance. The
infimum on the left-hand side of (14) is taken over so-called transport plans π that
are joint measures on the product space Ω×Ω with marginals (ρ−ρh)+ and (ρ−ρh)−.
Roughly speaking, the quantity on the left-hand side measures the minimal total cost
that is necessary to transfer the configuration ρ into the configuration ρh, if the
transport over a distance z costs log (z/r + 1). Finding and characterizing the “best”
transport plan π is a central question in the theory of optimal transportation. The
minimal total cost is a mathematical distance between ρ and ρh and metrizes weak
convergence. In section 4 below, we will review properties of this (Kantorovich–
Rubinstein) distance function that are relevant for the comprehension of this paper.

With the understanding that Kantorovich–Rubinstein distances metrize weak
convergence, the statement in Theorem 2.1 can be seen as an estimate on the rate of
weak convergence of approximate solutions defined by the upwind finite volume scheme
toward the unique solution to the continuous problem. For finite time intervals and
small mesh sizes, the

√
h term dominates the convergence rate as

√
h‖u‖L1(L∞) � h.

For r =
√
h ∼

√
h‖u‖L1(L∞), the right-hand side becomes independent of h� 1 and

the estimate turns into

inf
π∈Π(ρ(t,·),ρh(t,·))

∫∫
log

(
|x− y|√

h
+ 1

)
dπ(x, y) ≤ C,

uniformly in h � 1 and t ≤ T for some fixed finite T . In other words, under the
assumptions of the theorem, the rate of weak convergence of approximate solutions
toward the solution of the continuous problem is at most 1/2.

We will see in section 7 below that our result is optimal in two respects: On
the one hand, we will show that for general rough initial data one cannot expect
convergence rates in strong norms. More precisely, for any s ∈ (0, 1) we find an initial
configuration in L1 such that

hs−1‖ρ− ρh‖L1(L1) 6−→ 0

as h → 0. On the other hand, we can show for the same example that the rate of
weak convergence is at least 1− s/2. This coincides with our findings in the limiting
case where s↗ 1.

Rate 1/2 convergence for the upwind scheme has been known for a long time in
the case of regular (e.g., Lipschitz) vector fields: Even though the scheme is formally
order 1, for nonsmooth initial configurations, the optimal convergence rate falls down
to 1/2. Among the many papers proving this result, we mention [17, 21, 27, 11, 20,
19, 6, 9, 10, 1]. To the best of our knowledge, in this paper, we provide the first
analytical results on the convergence rates in the case of vector fields with spatial
Sobolev regularity. Numerical evidence for this rate was reported earlier by Boyer [4];
see also subsection 2.4 below. Convergence (without rates) of the scheme in the
DiPerna–Lions setting was obtained by Walkington [29] and Boyer [4].

The reason for the loss in the convergence rate for nonsmooth initial data is the
occurrence of numerical diffusion. In a certain sense, the approximate scheme behaves
like the diffusive approximation

∂tρ+∇ · (uρ)− h∆ρ = 0,
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which on the level of the Lagrangian variables is understood as a stochastic differential
equation

(15) dψt = u(t, ψt) dt+
√

2h dWt,

where Wt is a Brownian motion in Rn. This motivates that the upwind scheme
has a probabilistic interpretation. Recently, Delarue, Lagoutière and Vauchelet [10]
interpreted the upwind scheme in the form (8) as Kolmogorov forward equation of a
Markov chain on the mesh T with jump probabilities given by pnKL (9). By doing
so, they were able to prove a 1/2-rate of convergence for the upwind scheme applied
to the continuity equation with a one-sided Lipschitz vector field. In our case of
Sobolev vector fields, we define ψt as a continuous state Markov chain on Ω with
a suitable jump kernel between the elements of the mesh. This Markov chain is a
time-discretized version of the stochastic differential equation (15) with a noise term
still depending on the details of the mesh (cf. Lemma 5.4 and (38) below). Moreover,
this noise term determines the 1/2-rate of convergence (cf. Lemma 5.5 below).

At the end of this subsection, we try to convince the reader that estimates on
logarithmic distances as the one in our main result appear quite naturally in the
context of continuity and transport equations. We will do so on the Lagrangian level,
that is, we consider the flows (cf. (17) below) φ and φh of two bounded Lipschitz
vector fields u and uh. It is not difficult to see that

(16) log

(
|φ(t, x)− φh(t, x)|

r
+ 1

)
≤ ‖∇u‖L1(L∞) +

1

r
‖u− uh‖L1(L∞),

uniformly in t and x. Hence, choosing r = rh = ‖u − uh‖L1(L∞), we see that the
velocity gradient controls the logarithmic distance of trajectories relative to the dis-
tance of the vector fields rh. The argument for this estimate is straightforward and
follows from the calculation∣∣∣∣ ddt log

(
|φ(t, x)− φh(t, x)|

r
+ 1

)∣∣∣∣ ≤ |u(t, φ(t, x))− uh(φh(t, x))|
|φ(t, x)− φh(t, x)|+ r

by triangle inequality and integration. A generalization of (16) to the case where
u has spatial Sobolev regularity is due to Crippa and De Lellis [8]. In the Eulerian
framework, an analogous estimate was derived recently in [23, 24].

2.4. Numerical experiments. We now present some numerical findings in fa-
vor of our analytical results. In two series of experiments, we applied the explicit
upwind finite volume scheme to initial data with jump discontinuities. In the first
series, the scheme is run with a constant vector field, and in the second one, we used
a stationary Hölder regular field belonging to W 1,p for any p with 1 ≤ p < 2. In both
cases we find that the convergence rate is at least 1/2 if the error is measured in the
L1 as well as the H−1 norm.

Let us describe our experiments in more detail. We consider the continuity equa-
tion on the two-dimensional unit torus Ω ∼= [0, 1)2

per. As initial datum, we consider

ρ0(x) =

{
1 if x ∈

[
0, 1

2

)2 ∪ [ 1
2 , 1
)2
,

−1 else.

In our first series of experiments, we run the experiment with the constant vector field
uc = (0, 1)T . In the second experiment, we choose uS = (v, .5)T with v = v(x2) given
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(a) Exact solution (b) Constant vector field uc (c) Sobolev vector field uS

Fig. 1. Illustration of numerical diffusion of upwind scheme (Mesh size h = 2−10).

by

v(x2) =

{
sin

1
2 (2πx2) if x2 ∈

[
0, 1

2

)
,

− sin
1
2 (−2πx2) if x2 ∈

[
1
2 , 1
)
.

It is clear that v is Hölder continuous with exponent 1/2 and belongs to W 1,p for any
1 ≤ p < 2. In both cases, we flip the sign of the vector field at time T = 1. As the
continuity equation is time reversible, the exact solution reaches the initial state at
time T = 2. Notice that both vector fields are divergence-free with ‖u‖L∞ = 1.

We run the simulations on a Cartesian mesh of size h ranging from 2−11 to 2−5.
The time step size is fixed to δt = h/4.

Figure 1 illustrates the effect of the numerical diffusion in the upwind scheme in
both experimental series. The reference is the exact solution displayed in the plot
on the left. The plot in the middle is computed with the upwind scheme using uc,
and the plot on the right is computed using uS . As is clear from the definition of the
scheme, diffusion can only happen in the direction of the flow. For this reason, the
vertical transitions at x1 = 0 and x1 = 1/2 remain sharp under the constant vector
field uc.

Figure 2 shows the computation of the final numerical error versus 1/h measured
both in the L1 norm and the (homogeneous) H−1 norm. The H−1 norm metrizes weak

102 103

10−2

10−1

100

(a) Constant vector field uc

102 103

10−2

10−1

100

(b) Sobolev vector field uS

Fig. 2. Computation of the numerical error versus 1/h measured in terms of the L1 norm
( ) and the H−1 norm ( ); as a reference we display the line h1/2 ( ).
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convergence just as the Kantorovich–Rubinstein distance, though both measures are
in general not equivalent. Indeed, on the one hand, Kantorovich–Rubinstein distances
with concave cost functions are often bounded by the H−1 norm. In our case, the
sublinearity of the logarithm implies the bound

inf
π

∫∫
log

(
|x− y|
r

+ 1

)
dπ ≤ inf

π

∫∫
|x− y|
r

dπ =
1

r
‖ρ−ρh‖Ẇ−1,1 ≤

1

r
‖ρ−ρh‖Ḣ−1 ,

because |Ω| = 1. See also [22, Lemma 1]. Here, ‖ρ − ρh‖Ẇ−1,1 in its primal rep-
resentation is also know as the Wasserstein distance W1(ρ, ρh) with cost function
c(x, y) := |x− y|. On the other hand, if ρh is converging to ρ weakly (in the sense of
measures), then the Fourier coefficients F(ρ−ρh)(k) =

∫
[0,1)2

e−ix·k(ρ−ρh)(x) dx are

vanishing pointwise. In particular, using the Fourier representation of the H−1 norm
in the periodic setting, it holds for any K ∈ 2πN that

‖ρ−ρh‖2Ḣ−1 =
∑

k∈(2πZ)2

|k|−2|F(ρ−ρh)(k)|2 ≤
∑
|k|≤K

|k|−2|F(ρ−ρh)(k)|2 +K−2‖ρ−ρh‖L2 .

Because ρ and ρh are both bounded in L2, by choosing K sufficiently large, the latter
shows that ρh is converging to ρ in H−1.

In our numerical tests, we have chosen the H−1 norm over the Kantorovich–
Rubinstein distance as the latter is particularly easy to compute numerically. The
computation in Figure 2 shows that in both experiments, the numerical error does
not exceed the rate 1/2 in the regime of small mesh sizes. Moreover, we observe that
the H−1 decay is slightly steeper than the L1 decay. We interpret this feature with a
certain enhanced “mixing effect” caused by the scheme with rough vector fields.

3. Properties of the continuous model. If u : [0, T ] × Ω → Rd is a smooth
vector field on the bounded Lipschitz domain Ω in Rd, then the flow of u is the
mapping φ : [0, T ]× Ω→ Rd solving the ordinary differential equation

(17) ∂tφ(t, x) = u(t, φ(t, x)), φ(0, x) = x.

Thus t 7→ φ(t, x) is the trajectory of a particle transported by u and starting at x ∈ Ω.
The condition that u is tangential at the boundary, see (2), guarantees that there is
no flow out of the domain.

In the present paper, we consider vector fields under low regularity assumptions.
We recall from (13) that u is uniformly bounded and weakly differentiable in the
spatial variable, and it is nearly incompressible in the sense that

(18) λ := ‖(∇ · u)−‖L1((0,T );L∞(Ω)) <∞.

Under these assumptions, a generalized notion of a solution of (17) is needed: A
mapping φ : [0, T ]× Ω→ Rd is called a regular Lagrangian flow, if

1. for a.e. x ∈ Ω, the mapping t 7→ φt(x) := φ(t, x) is an absolutely continuous
integral solution, i.e.,

φ(t, x) = x+

∫ t

0

u(s, φ(s, x)) ds for all t ∈ [0, T ];

2. there exists a constant Λ independent of t ∈ [0, T ] such that

Ld(φ−1
t (A)) ≤ ΛLd(A) for any Borel subset A of Ω.

The constant Λ is often called the compressibility constant of φ.
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The existence, uniqueness, and stability of regular Lagrangian flows in the setting of
our paper have been proved by DiPerna and Lions [12] (for vector fields with bounded
divergence); see also [8] for a quantitative approach (under the milder assumption
(18)).

The compressibility assumption (18) implies that the generalized Jacobian

Jφt(x) = exp

(∫ t

0

(∇ · u)(s, φt(x)) ds

)
is bounded below,

(19) e−λ ≤ Jφt(x),

and for any f ∈ L1(Ω) we have thanks to the boundary condition (2) the change of
variable formula

(20)

∫
Ω

f(φt(x))Jφt(x) dx =

∫
Ω

f(x) dx.

Notice that we may choose Λ = eλ in the definition of regular Lagrangian flows. A
comprehensive analysis of the generalized Jacobian can be found in [7].

With the help of regular Lagrangian flows, solutions to the continuity equation (1)
take on an elegant form. Indeed, if ρ is the unique solution with initial datum ρ0,
we may simply write ρ(t, · ) = (φt)#ρ0, where # denotes the push-forward operator,
defined by ∫

Ω

f d(φ)#µ =

∫
Ω

f ◦ φdµ,

for any Borel function f and any Borel measure µ. Thanks to the change of variables
formula (20), we thus have the identity ρ(t, φt(·)) Jφt(·) = ρ0(·). Therewith, we can
estimate

‖ρ(t, ·)‖qLq
(20)
=

∫
Ω

|ρ(t, φt(x))|qJφt(x) dx
(19)

≤ Λ(q−1)‖ρ0‖qLq ,

and thus

(21) ‖ρ‖L∞(Lq) ≤ Λ1− 1
q ‖ρ0‖Lq .

The relation between the continuity equation (1) and the ordinary differential equa-
tion (17) is reviewed in [3].

4. Transport distance with logarithmic cost. In this section we review some
properties of transport distances with logarithmic cost functions. For a comprehen-
sive introduction to the theory of optimal transportation, we refer to Villani’s mono-
graph [28].

Given two nonnegative distributions ρ1 and ρ2 of the same mass ρ1[Ω] = ρ2[Ω],
a transport plan or coupling π is a plan that determines how the distribution ρ1 is
transferred to the distribution ρ2. These are characterized by the condition

π[A× Ω] =

∫
A

ρ1 dx, π[Ω×A] =

∫
A

ρ2 dx for all measurable A ⊂ Ω.

In this paper, we will rather use the equivalent characterization

(22)

∫ (
ϕ(x) + ξ(y)

)
dπ(x, y) =

∫
ϕρ1 dx+

∫
ξρ2 dx for all ϕ, ξ ∈ C(Ω).

The set of all transport plans between ρ1 and ρ2 will be denoted by Π(ρ1, ρ2).
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The problem of optimal transportation is to minimize the total cost that is nec-
essary for transferring configuration ρ1 into configuration ρ2. Here, we will always
assume that costs are measured relative to the distance of shipment. Given a non-
negative cost function c on [0,∞), this amounts to minimizing the total transport
cost ∫∫

c(|x− y|) dπ(x, y)

among all admissible transport plans π ∈ Π(ρ1, ρ2).
In most parts of this paper, we will consider logarithmic cost functions c(z) =

log(z/r + 1) with some positive parameter r, and we write

Dr(ρ1, ρ2) = inf
π∈Π(ρ1,ρ2)

∫∫
log

(
|x− y|
r

+ 1

)
dπ(x, y).

As any concave function, the logarithmic cost function induces a metric on Ω by setting
d(x, y) = c(|x−y|). This crucial insight has a number of important consequences that
we gather in the following.

• The minimal total cost Dr constitutes a distance on the space of densities
with equal mass on Ω; cf. [28, Theorem 7.3]. In particular, it obeys the
triangle inequality for all densities ρ1, ρ2, ρ3 ∈ L1(Ω),

(23) Dr(ρ1, ρ2) ≤ Dr(ρ1, ρ3) +Dr(ρ3, ρ2).

In the literature, such distances go by difference names, including “Wasser-
stein distance,” “Monge–Kantorovich distance,” or “Kantorovich–Rubinstein
distance” depending on the context and the mathematical community. In
this paper, we will choose the third of these options, as motivated by the
following observation:

• There holds the Kantorovich–Rubinstein dual representation for any ρ1, ρ2 ∈
L1(Ω)

Dr(ρ1, ρ2) = sup
ψ

{∫
ψ d(ρ1 − ρ2) : |ψ(x)− ψ(y)| ≤ log

(
|x− y|
r

+ 1

)}
,

cf. [28, Theorem 1.14]. In particular, the transport distance between two
densities ρ1 and ρ2 only depends on their difference ρ1 − ρ2 and there holds
the transshipment identity

(24) Dr(ρ1, ρ2) = Dr((ρ1 − ρ2)+, (ρ1 − ρ2)−).

Moreover, the latter allows for extending the definition of the Kantorovich–
Rubinstein distance to any two not necessarily nonnegative densities of same
mass.

• Kantorovich–Rubinstein distances defined for densities on a compact do-
main Ω metrize weak convergence for measures, i.e.,

Dr(ρh, ρ)→ 0 ⇐⇒
∫
f dρh →

∫
f dρ for all f ∈ C(Ω) as h→ 0;

see [28, Theorem 7.12] for more details.
• The minimum in the primal and the maximum in the dual formulation are

both attained; see, for instance, Exercise 2.36 and Theorem 2.45 in [28]. We
will denote the optimal transport plan by πopt. A characterization of πopt

was given by Gangbo and McCann [15]; see also [28, Theorem 2.45].



UPWIND SCHEMES WITH ROUGH COEFFICIENTS 823

• It has been shown in [23] that the mapping t 7→ Dr(ρ1(t), ρ2(t)) is absolutely
continuous with derivative

(25)

∣∣∣∣ ddtDr(ρ1(t), ρ2(t))

∣∣∣∣ ≤ ∫∫ |u(x)− u(y)|
|x− y|+ r

dπopt(x, y),

if ρ1 and ρ2 are two integrable distributional solutions of the continuity equa-
tion ∂tρ+∇ · (u ρ) = 0. In (25), πopt = πopt(t) is the optimal transport plan
for Dr((ρ1(t)− ρ2(t))+, (ρ1(t)− ρ2(t))−).

We conclude this section with a particular coupling π ∈ Π(ρ1, ρ2), which applies to the
case where the densities can be written as the push-forward of the same density under
different flows, ρ1 = ψ#ρ, ρ2 = φ#ρ. More generally, let (ψ(x))x∈Ω and (φ(x))x∈Ω be
two families of random variables on the common standard probability space (Ω,F ,P).
Let E denote the corresponding expectation and Px(ψ ∈ dy) := P(ψ(x) ∈ dy). Then
for any nonnegative ρ, we have (ψ#ρ)(dy) =

∫
Px(ψ ∈ dy) ρ(dx) and it holds that

(26) Dr(ψ#ρ, φ#ρ) ≤
∫

Ex
[
log

(
|ψ − φ|
r

+ 1

)]
ρ(dx) =: Eρ

[
log

(
|ψ − φ|
r

+ 1

)]
.

In the following, we will refer to this coupling as the standard coupling. In particular,
we can apply the standard coupling to the regular Lagrangian flow φt from section 3,
which is then interpreted as a random variable with Px(φt ∈ dy) = δφt(x)(dy).

5. Properties of the upwind scheme. In this section, we derive some intrinsic
properties of the upwind finite volume scheme. Except when noted otherwise, all these
properties will be valid for any (unstructured) tessellation T , for which the regularity
condition (3) is active.

5.1. Basis properties. Let us start by discussing the relation between the two
CFL conditions (10) and (11). The following lemma shows that (11) is sufficient
for (10) provided the implicit constant is chosen small enough.

Lemma 5.1 (verification of CFL condition (10)). Suppose that the mesh T sat-
isfies (3) with constant C0 and that u ∈ L1(L∞∩W 1,p). Then it holds for any K ∈ T
and all n ∈ J0, NK that

(27)
∑
L∼K

pnKL = δt
∑
L∼K

τKLu
n+
KL ≤ C0

δt

h
un∞,

where un∞ is defined in (11).

Proof. By using the definition τKL = |K |L|/|K| and the one of un+
KL in (6), we

arrive at

δt
∑
L∼K

τKLu
n+
KL =

δt

|K|
∑
L∼K

(
−
∫ tn+1

tn

∫
K|L

u · νKL dHd−1 dt

)+

.

Now, since u ∈ L1(L∞ ∩W 1,p), its time average −
∫ tn+1

tn
u dt is in L∞ ∩W 1,p and in

particular in L∞ ∩W 1,1, since Ω is bounded. Hence, we can apply a trace estimate
and obtain

δt
∑
L∼K

τKLu
n+
KL ≤ δt −

∫ tn+1

tn
‖u‖L∞ dt

∑
L∼K

|K |L|
|K|

= δt un∞
|∂K|
|K|

≤ C0
δt

h
un∞,

where the last step follows by the regularity property (3) (or (4)).
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In the next lemma, we summarize classical properties of the upwind scheme.
These are monotonicity, mass preservation, and stability. Notice that for the deriva-
tion of these properties, the numerical CFL condition (10) is sufficient.

Lemma 5.2 (stability estimates). The upwind finite volume scheme has the fol-
lowing properties:

(i) If ρ0
h ≥ 0, then ρnh ≥ 0 for all n ∈ J0, NK.

(ii) For any n ∈ J0, NK it holds that

(28)

∫
ρnh dx =

∫
ρ0
h dx.

(iii) For any q ≥ 1 it holds that

(29) ‖ρh‖L∞(Lq) ≤ exp1− 1
q

(∫ T

0

‖(∇ · u)−‖L∞dt

)
‖ρ0
h‖Lq = Λ1− 1

q ‖ρ0
h‖Lq .

Proof. Let us first note, that under the CFL condition (10) it holds that

1− δt
∑
L∼K

τKLu
n+
KL ≥ 0,

and therefore 0 ≤ pnLK ≤ 1 for all K,L ∈ T . As a consequence, we deduce from (8)
that ρn+1

K is defined as a conical combination of (ρnL)L∈T , which in turn implies (i).
Summation over K ∈ T in the upwind scheme (8) results in∑

K∈T
|K|ρn+1

K =
∑

K,L∈T
|L|pnLKρnL =

∑
L∈T
|L|ρnL

∑
K∈T

pnLK ,

which implies (28), since
∑
K p

n
LK = 1. This proves (ii). Moreover, by applying the

modulus and the triangle inequality to the above identity, we obtain the case q = 1
in the estimate of (iii).

Now, we prove the other pivotal estimate for q =∞. At first, we calculate

1

|K|
∑
L∈T
|L|pnLK = 1− δt

∑
L∼K

|K |L|
|K|

(un+
KL − u

n−
KL)

= 1− 1

|K|

∫ tn+1

tn

∫
∂K

u · ν dHd−1dt

= 1−
∫ tn+1

tn
−
∫
K

∇ · u dx dt.

Then, applying the absolute value and taking the maximum in (8), we find that

|ρn+1
K | ≤

(
1

|K|
∑
L∈T
|L|pnLK

)
max
K∈T
|ρnK | ≤

(
1 +

∫ tn+1

tn
‖(∇ · u)

−‖L∞(Ω) dt

)
max
K∈T
|ρnK |.

After passing to the supremum in the spatial variable we thus have

max
K∈T
|ρn+1
K | ≤

(
1 +

∫ tn+1

tn
‖(∇ · u)

−‖L∞(Ω) dt

)
max
K∈T
|ρnK |.
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The statement in (29) with q =∞ then follows by iteration thanks to the elementary
inequality Πn(1 + an) ≤ exp (

∑
n an).

Summarizing the previous two steps, we have found that the upwind scheme at
time step n defines a bounded linear operator from L1 to L1 with norm bounded

by 1, and from L∞ to L∞ with norm bounded by exp
(∫ tn

0
‖(∇ · u)−‖L∞ dt

)
. The

Riesz–Thorin interpolation theorem then yields the result for any q ∈ [1,∞].

5.2. Probabilistic interpretation. We will see in section 6 below that it is
enough to consider configurations that are nonnegative. Note that this is consistent
with the upwind scheme by the first property in Lemma 5.2 above. We will thus
assume from here on that ρnK ≥ 0 for all n ∈ J0, NK and all K ∈ T .

Following the ideas of Delarue, Lagoutière, and Vauchelet in [9, 10], we associate
random characteristics with the upwind scheme. Therefore, we construct a Markov
chain (Jn)n∈N0 with state space T . We use T N0 as the canonical space and (Jn)n∈N0

is then the canonical process. The σ-field A is generated by sets
∏
n∈NAn with

An ⊂ T and An = T for any sufficiently large value of n. The canonical filtration is
F = (Fn = σ(J0, . . . , Jn))n∈N0

. We endow (T N0 ,A) with a collection of probability
measures (PK)K∈T . Here, the element K ∈ T is the initial point for the process
(Jn)n∈N0

, i.e., it holds that PK(J0 = L) = δK,L. Moreover, P defines the Markov
chain (Jn)n∈N0 with transition matrix (pnKL)K,L∈T as defined in (9). We thus have
the relation

P(Jn+1 = L | Fn) = pnJnL.

For µ, a nonnegative measure on T , we define Pµ by

Pµ( · ) =
∑
K∈T

µ(K)PK( · ).

This is a Markov chain starting from µ, i.e., Pµ(J0 = K) = µ(K). We will denote by
Jn#µ the law of the Markov chain at time n started from µ.

In the following lemma, ρn denotes the solution of the upwind scheme at time
n ∈ N0 considered as a vector indexed by the control volumes K ∈ T .

Lemma 5.3 (flow representation of approximate solution). The solution of the
upwind scheme is the push-forward of the discretized initial datum by the Markov
chain, i.e., ρn = Jn#ρ

0 for all n ∈ N.

Proof. The proof is identical to [10, Lemma 3.6]. Just recall that (7) can be rewrit-
ten in the form (8), which gives the evolution of the law of the Markov chain Jn.

We now define random characteristics (ψn)n∈N0
as a Markov chain with state

space Ω ⊂ Rd. We use the canonical space ΩN0 with σ-algebra B generated by sets∏
n∈N0

Bn, where (Bn)n∈N0
is the family of Borel sets in Rd such that Bn = Rd for

any sufficiently large n . We will use two filtrations. First, the canonical filtration
FRd = (FnRd = σ(ψ0, . . . , ψn))n∈N0

and second the just defined coarse filtration F =

(Fn = σ(J0, . . . , Jn))n∈N0
, where Jk ∈ T is the corresponding Borel measurable cell

Jk ⊂ Rd.
Then, we endow (ΩN0 ,B) with a family of probability measures (Pz)z∈Ω gener-

ating a continuous-state Markov chain started in z, whose jump kernel at x ∈ K is
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given by

(30) qn(x, dy) :=

{
pnKL

dy
|L| for dy ∈ L ∼ K,

pnKK δx(dy) for dy ∈ K,

where pnKL is defined in (9). Hence, it holds that

(31) Pz(ψn+1 ∈ dy | FnRd) = qn(ψn, dy).

For any FRd -measurable nonnegative µ, we set Pµ( · ) =
∫
Pz( · )µ(dz). In the follow-

ing, we will exclusively start the Markov chain from F-measurable densities like the
discretized initial data ρ0

h as defined in (5).
Let us collect some properties of the random characteristics and point out the

close links between the Markov chains (Jn)n∈N0
and (ψn)n∈N0

.

Lemma 5.4. Suppose that ρ0
h is nonnegative. Then the following holds:

(i) The distribution ψn#ρ
0
h is constant on each cell K ∈ T . Moreover, if ρnh is

given by (12), then ρnh = ψn#ρ
0
h. In particular, it holds that

(32) Pρ0h(ψn ∈ dx | Jn) =
χJn(x) dx

|Jn|
.

Hence ψn is uniformly distributed over any control volume K ∈ T , and thus
Pρ0h(ψn ∈ K) = Pρ0h(Jn = K) .

(ii) If Eρ0h denotes the expectation under the law Pρ0h , then

(33) Eρ0h [ψn+1 − ψn | ψn] = δt unh(ψn),

where the net flow unh(x) for x ∈ K is defined by

(34) unh(x) := unK :=
∑
L∼K

pnKL
xL − xK

δt
with xK := −

∫
K

x dx.

If K is a control volume of a Cartesian tessellation, then unK is related to the
net outflow over the edges by the identity

(35) unK =
∑
L∼K

νKLu
n+
KL.

(iii) The relation

ξn := ψn+1 − ψn − E[ψn+1 − ψn | Fn]

defines a family of Fn+1
Rd measurable random variables (ξn ∈ Rd)n∈N0

satis-
fying

(36) E[ξn | Fn] = 0 and |ξn| ≤ 4h a.s.

Moreover, for any m ≥ 1, there exists a constant C > 0 only depending on m
such that

(37) E
[
|ξn|m | Fn

]
≤ C δt un∞ hm−1,

where un∞ is defined in (11).
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Formula (35) is the only place in this paper in which the assumption that T is a
Cartesian triangulation will be used. We will further comment on this after Lemma 6.5
below.

Proof. First, we verify that ψn#ρ
0
h is constant on each cell K and that the constant

satisfies the same recursion as the solution of the upwind scheme in (8). We note that
ρ0
h by definition (5) is absolutely continuous with respect to the Lebesgue measure

and by construction of the jump kernel (30) so is ψn#ρ
0
h for any n ≥ 1. Therefore, we

let ϕ be a continuous test function on Ω and calculate∫
ϕ(x)ψn+1

# ρ0
h(dx)

(31)
=

∫∫
ϕ(x) qn(y, dx)ψn#ρ

0
h(dy)

=
∑
L∈T

∫
L

(∑
K∼L

pnLK−
∫
K

ϕ(x)dx+ ϕ(y)pnLL

)
ψn#ρ

0
h(dy).

To show that ψn+1
# ρ0

h is constant on any K ∈ T , we argue by induction. Since

ψ0
#ρ

0
h = ρ0

h the base case is settled. Now we assume that ψn#ρ
0
h is constant on every

K ∈ T and denote these constants by cnK . Then we obtain∫
ϕ(x)ψn+1

# ρ0
h(dx) =

∑
L∈T

∑
K∈T
|L|cnL pnLK −

∫
K

ϕ(x) dx.

Now, if ϕ is such that −
∫
K
ϕ(x)dx = 0 for all K ∈ T , the right-hand side vanishes.

Hence, also ψn+1
# ρ0

h(dx) is constant on any K ∈ T .
As a consequence, by choosing ϕ as the characteristic function for some fixed

K ∈ T (which can be done by approximation), we infer the identity

|K|cn+1
K =

∑
L∈T
|L|cnL pnLK .

Comparing this formula with (8) and recalling that c0K = ρ0
K , the uniqueness of the

explicit scheme yields that cnK = ρnK for any n. Hence ρn+1
h = ψn+1

# ρ0
h.

For the second property, we calculate for K ∈ T fixed:

E[ψn+1 − ψn | ψn ∈ K]
(31)
=

(32)

1

|K|

∫
K

∫
(y − x) qn(x, dy) dx

(30)
=

∑
L∼K

pnKL −
∫
K

−
∫
L

(y − x) dy dx

=
∑
L∼K

pnKL(xL − xK) = δt unK .

In the case of uniform rectangular meshes, we have for all L ∈ T the identity
|K |L| |xL − xK | = |K| and can further rewrite

unK
(9)
=
∑
L∼K

|K |L| (xL − xK)

|K|
un+
KL =

∑
L∼K

νKLu
n+
KL.

We now turn to the proof of (iii). The measurability and mean-zero property
of ξn follow immediately from the latter’s definition. In view of (33) and (34), the
norm of ξn can be estimated by

|ξn| ≤ |ψn+1 − ψn|+ δt |unJn | ≤ 2h+ 2h
∑
L∼K

pnKL ≤ 4h.
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For the further characterization of ξn, we calculate using a test function ϕ on Rd,

E[ϕ(ξn) | Fn]
(31)
=

(32)
−
∫
Jn

∫
ϕ(y − x− δt unJn) qn(x, dy) dx

(30)
= pnJnJn ϕ(−δt unJn) +

∑
L∼Jn

pnJnL −
∫
Jn
−
∫
L

ϕ(y − x− δt unJn) dy dx.

Choosing ϕ(x) = |x|m as a test function, we obtain the estimate (in which we suppress
the m-depending constant)

E
[
|ξ|m | Fn

]
. hm

∑
L∼Jn

pnJnL + |δt unJn |
m . hm

∑
L∼Jn

pnJnL,

where we used the estimate

|δt unJn |
m

(34)

.

(
h
∑
L∼Jn

pnJnL

)m
≤ hm

∑
L∼Jn

pnJnL.

The conclusion now follows from (27).

From part (iii) of the above lemma it follows that the random characteristics
satisfy the discrete difference equation

(38) ψn+1 − ψn = δt unh(ψn) + ξn,

which is a time and space discretized variant of the stochastic differential equa-
tion (15). We therefore expect that the martingale part

∑n
`=0 ξ

` behaves like a rescaled
random walk of scale h. This conjecture will be confirmed by the following lemma, in
which an h1/2 bound on the martingale part is established.

Lemma 5.5 (martingale estimate). Suppose that ρ0
h is nonnegative. For any

1 ≤ r <∞ there exists a positive constant C such that

(39) Eρ0h

[
sup

0≤k<N

∣∣∣∣ k∑
n=0

ξn
∣∣∣∣r
] 1
r

≤ C
(√

h‖u‖L1(L∞) + h
)
‖ρ0
h‖

1
r

L1 .

Our proof of Lemma 5.5 is (in parts) similar to the one of [10, Lemma 4.5].

Proof. For the proof, we note that we can convert ρ0
h into a probability measure

by normalizing ρ0
h/‖ρ0

h‖L1 . Hence, we take the expectation with respect to an initial
F-measurable probability distribution, which we omit in the following part of the
proof. Let Mk :=

∑k−1
`=0 ξ

` with M0 := 0 and M∗k := sup1≤`≤k|M`|. Then by (iii) of
Lemma 5.4, it holds that

E
[
Mk | Fk−1

]
= Mk−1 + E

[
ξk−1 | Fk−1

]︸ ︷︷ ︸
=0

= Mk−1,

and thus Mk is a discrete mean-zero martingale. This observation turns out to be
crucial for the remainder of this proof as it enables us to apply two well-known mar-
tingale maximal inequalities to (Mk). One of these is the Burkholder–Davis–Gundy
inequality [16, Proposition 15.7], which for any r ∈ [1,∞) takes the form

E
[
(M∗k )

r] ≤ Cr E[[M ]
r
2

k

]
.
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Here, [M ]k is the quadratic variation of (Mk) given by

[M ]k =

k∑
n=1

|Mn −Mn−1|2 =

k−1∑
n=0

|ξn|2,

and Cr is a constant dependent only on r. Note that we have E
[
[M ]

r
2

k

] 1
r ≤ E

[
[M ]k

] 1
2

for any r ∈ [1, 2] thanks to Jensen’s inequality. For these values of r, it is thus enough
to consider the expectation of the quadratic variation, which by linearity and the law
of total expectation becomes

E
[
[M ]k

]
=

k−1∑
n=0

E
[
E
[
|ξn|2

∣∣∣Fk]] (37)

≤ Ch δt

k−1∑
n=0

un∞.

This estimate gives the conclusion in the case r ∈ [1, 2].
We furthermore notice that in expectation, the quadratic variation is equal to the

L2 norm of Mn as a consequence of the orthogonality of (ξn), cf. (36), and the law of
total expectation. The previous estimate thus implies

(40) E
[
|Mk|2

]
= E

[
[M ]k

]
≤ Ch δt

k−1∑
n=0

un∞.

In the case r ≥ 2 we will use the second of the aforementioned martingale esti-
mates, namely, Doob’s inequality [16, Proposition 6.16]: It holds for all r > 1 that

E
[
(M∗k )

r] 1
r ≤ r

r − 1
E
[
|Mk|r

] 1
r .

For the remaining statement of the lemma, it is thus enough to estimate the Lr norm
of the martingale Mk for all r > 2. We will furthermore restrict our study to even
values of r, that is, we assume that r = 2s for some s ∈ N. The general case then
follows by Jensen’s inequality as for r ∈ [1, 2). We argue by induction over s. The
induction base is settled for the case s = 1, which we just have proved in (40). Hence,
we assume the induction hypothesis

(41) E
[
|Mk|r

]
≤ Cr

(
h

(
δt
k−1∑
n=0

un∞ + h

)) r
2

to hold for any r ∈ R with 2 ≤ r ≤ 2s− 2. To begin the induction step, we calculate

|Mk+1|2s = |Mk + ξk|2s =
(
|Mk|2 + 2〈Mk, ξ

k〉+ |ξk|2
)s

= |Mk|2s + s |Mk|2(s−1)
(

2〈Mk, ξ
k〉+ |ξk|2

)
︸ ︷︷ ︸

=:I

+

s∑
`=2

(
s

`

)
|Mk|2(s−`)

(
2〈Mk, ξ

k〉+ |ξk|2
)`

︸ ︷︷ ︸
=:II`

.

In the estimation of the term I, it is crucial that |Mk|2(s−1)Mk and ξk are orthogonal
in expectation. Indeed, thanks to (36) and the law of total expectation, it holds that
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E[|Mk|2(s−1)〈Mk, ξ
k〉] = E[|Mk|2(s−1) E[〈Mk, ξ

k〉 | Fk]] = 0. Similarly, with the help
of (37), we derive E[|Mk|2(s−1)|ξk|2] . h δt uk∞E[|Mk|2(s−1)]. We have thus shown
that

E[I] ≤ Ch δt uk∞E
[
|Mk|2(s−1)

]
.

Using essentially the same arguments as in the last estimate, we can get control over
the terms II`. Indeed, with the help of (37), since ` ≥ 2, we have

E[II`] ≤ CE
[
|Mk|2s−`|ξk|`

]
+ E

[
|Mk|2(s−`)|ξk|2`

]
≤ Cδt uk∞h`−1E

[
|Mk|2s−`

]
+ δt uk∞h

2`−1E
[
|Mk|2(s−`)

]
.

It will be convenient to define Uk∞ =
∑k−1
n=0 u

n
∞. Combining these two estimates and

applying the induction hypothesis (41), we then obtain

E
[
|Mk+1|2s

]
= E

[
|Mk|2s + sI +

s∑
`=2

(
s

`

)
II`

]

≤ E
[
|Mk|2s

]
+ C δt uk∞

2s∑
`=2

(
h(δt Uk∞ + h)

) 2s−`
2 h`−1

≤ E
[
|Mk|2s

]
+ C δt uk∞ hs

( 2s∑
`=2

(δt Uk∞)
2s−`

2 h
`−2
2 + hs−1

)
≤ E

[
|Mk|2s

]
+ C δt uk∞ hs

(
(δt Uk∞)

s−1
+ hs−1

)
,

where we have used the fact that
∑2s
`=2 a

2s−`
2 b

`−2
2 =

∑2s−2
`=0

√
a

2s−2−`√
b
`
≤ C(as−1 +

bs−1) in the last inequality. Iterating this estimate and using M0 = 0, we obtain for
any k ∈ N that

E
[
|Mk|2s

]
≤ C

k−1∑
n=0

δt un∞ hs
(

(δt Un∞)
s−1

+ hs−1
)
≤ Chs

(
δt Uk∞ + h

)s
.

This proves the statement in (41) for r = 2s. For intermediate values r = 2s−σ with
σ ∈ (0, 2), we estimate by using Jensen’s inequality again

E
[
|Mn|r

] 1
r = E

[(
|M |2sn

) 2s−σ
2s

] 1
2s−σ

≤ E
[
|M |2sn

] 1
2s

.

This concludes the proof.

6. Proof of the error estimates.

6.1. Proof of Theorem 2.1. We start with the observation that it is enough
to consider the case of nonnegative (approximate) solutions. Indeed, in view of the
superposition principle for the continuity equation, that is, ρ(t) = (φt)#ρ0, it is clear
that solutions are nonnegative if the data are. In particular, if the functions ρ± denote
the solutions corresponding to the initial data ρ±0 ≥ 0, then ρ± ≥ 0. Moreover, by
the uniqueness of the Cauchy problem, it holds that ρ = ρ+ − ρ− is the unique
solution with initial data ρ0 = ρ+

0 − ρ
−
0 . With regard to Lemma 5.2, the same holds

true in the discrete setting: The solution to the upwind scheme can be split into
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ρh = (ρh)+− (ρh)−, where (ρh)± is the nonnegative discrete solution with initial data
(ρ±0 )h (first decomposed then discretized). Now, by the transshipment property (24)
and the triangle inequality (23) of the Kantorovich–Rubinstein distance, we estimate

Dr(ρ, ρh) ≤ Dr(ρ+, (ρh)+) +Dr(ρ−, (ρh)−).

To prove Theorem 2.1, it is therefore enough to control the distances between the
nonnegative densities on the right.

We keep t ∈ [tn, tn+1) fixed and split the Kantorovich–Rubinstein distance be-
tween ρ(t) = (φt)#ρ0 and ρh(t) = ψn#ρ

0
h according to

Dr(ρ(t), ρh(t))

≤ Dr((φt)#ρ0, (φtn)#ρ0) +Dr((φtn)#ρ0, (φtn)#ρ
0
h) +Dr((φtn)#ρ

0
h, ψ

n
#ρ

0
h).(42)

Here we have used the triangle inequality for Dr; cf. (23). The first term in (42)
measures the error caused by the discretization in time, the second one measures the
error due to the discretization of the initial datum, and the third term quantifies the
error of the upwind scheme. The estimates of the first two terms are contained in the
following two lemmas.

Lemma 6.1 (error due to time discretization). There exists a constant C such
that

Dr((φt)#ρ0, (φtn)#ρ0) ≤ log

(
Ch

r
+ 1

)
‖ρ0‖L1 .

Lemma 6.2 (error due to discretization of initial data). There exists a constant
C such that

Dr((φt)#ρ0, (φt)#ρ
0
h) ≤ C log

(
h

r
+ 1

)(
‖ρ0‖L1 + Λ

1
p ‖ρ0‖Lq ‖u‖L1(W 1,p)

)
.

Here and in the following, ‖u‖L1(W 1,p) can be replaced by the homogeneous part
‖∇u‖L1(Lp) in situations where Ω is a convex domain.

To estimate the third term in (42), we first estimate the transportation distance
with the help of the standard coupling (26),

Dr((φtn)#ρ
0
h, ψ

n
#ρ

0
h) ≤ Eρ0h

[
log

(
|φtn(x)− ψn|

r
+ 1

)]
.

Using the evolution laws in (17) and (38) together with the concavity of the logarithm,
we obtain

Dr((φtn)#ρ
0
h, ψ

n
#ρ

0
h) ≤ Eρ0h

[
log

(
|φtn−1(x)− ψn−1 − ξn−1|

r
+ 1

)]
+ Eρ0h

[∣∣∫ tn
tn−1 u(s, φs(x)) ds− δt un−1

h (ψn−1)
∣∣

|φtn−1(x)− ψn−1 − ξn−1|+ r

]
.

This procedure can be repeated. After n− 1 iterations, we have the estimate

Dr((φtn)#ρ
0
h, ψ

n
#ρ

0
h) ≤ Eρ0h

[
log

(
1

r

∣∣∣∣n−1∑
`=0

ξ`
∣∣∣∣+ 1

)]
(43)

+

n−1∑
`=0

Eρ0h

∣∣∫ t`+1

t`
u(s, φs(x)) ds− δt u`h(ψ`)

∣∣
|φt`(x)− ψ` −

∑n−1
k=` ξ

k|+ r

.
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Let us denote the first term by T0 and note that the second term on the right-hand
side of the previous estimate is furthermore controlled by the sum T1 +T2 +T3, where

T1 :=

n−1∑
`=0

1

r

∫ t`+1

t`

∫
|u(s, φs(x))− u(s, φt`(x))| ρ0

h(dx) ds(44)

T2 :=

n−1∑
`=0

∫ t`+1

t`
Eρ0h

[ ∣∣u(s, φt`(x))− u(s, ψ`)
∣∣

|φt`(x)− ψ` −
∑n−1
k=` ξ

k|+ r

]
ds(45)

T3 :=

n−1∑
`=0

1

r
Eρ0h

[∣∣∣∣∫ t`+1

t`
u(s, ψ`) ds− δt u`h(ψ`)

∣∣∣∣
]
.(46)

We thus have to estimate the terms in (43)–(46). This is the content of the following
lemmas.

The term in (43) is caused by the numerical diffusion introduced by the upwind
scheme, which is manifested as a sum of centered random variables. Our proof of (43)
consists of an application of martingale estimate from Lemma 5.5.

Lemma 6.3 (estimate of T0 (43)). There exists a constant C such that

Eρ0h

[
log

(
1

r

∣∣∣∣n−1∑
`=0

ξ`
∣∣∣∣+ 1

)]
≤ C 1

r

(√
h‖u‖L1(L∞) + h

)
‖ρ0‖L1 .

The next term (44) involves a time-shift, and we use again the CFL condition (11).
In addition, in this estimate, we use the maximal function of the gradient of u to bound
the difference.

Lemma 6.4 (estimate of T1 (44)). There exists a constant C such that

n−1∑
`=0

1

r

∫ t`+1

t`

∫
|u(s, φs(x))− u(s, φt`(x))| ρ0

h(dx) ds ≤ C h

r
Λ

1
p ‖ρ0‖Lq ‖u‖L1(W 1,p).

To estimate the term in (45), we use a combination of the maximal function
estimate and the martingale estimate from Lemma 5.5.

Lemma 6.5 (estimate of T2 (45)). There exists a constant C such that

n−1∑
`=0

∫ t`+1

t`
Eρ0h

[ ∣∣u(s, φt`(x))− u(s, ψ`)
∣∣

|φt`(x)− ψ` −
∑n−1
k=` ξ

k|+ r

]
ds

≤ C
(

1 +
1

r

(√
h‖u‖L1(L∞) + h

))
Λ

1
p ‖ρ0‖Lq‖u‖L1(W 1,p).

The control of (46) crucially relies on the particular form of the averaged velocity
field ulh introduced in (34) and the regularity of the mesh. To be more specific,
our argument is based on the identity (35) which seems to be valid on Cartesian
tessellations only. At this stage, it is not clear to us how to estimate T3 (46) in the
case of more general, possibly unstructured, tessellations, though some ideas from
the construction in [9] may be relevant. We plan to address this question in future
research.

Lemma 6.6 (estimate of T3 (46)). There exists a constant C such that

n−1∑
`=0

1

r
Eρ0h

[∣∣∣∣∫ t`+1

t`
u(s, ψ`) ds− δt u`h(ψ`)

∣∣∣∣
]
≤ C h

r
Λ

1
p ‖ρ0‖Lq ‖u‖L1(W 1,p).
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A combination of the Lemmas 6.1–6.6 completes the proof of Theorem 2.1.

6.2. Proof of Lemmas 6.1–6.6. In this subsection, we turn to the proofs of
Lemmas 6.1–6.6.

Proof of Lemma 6.1. From the CFL condition (11), we deduce

|φt(x)− φtn(x)| ≤
∫ t

tn
|u(s, φs(x))| ds ≤ δt un∞ ≤ Ch

for a.e. x ∈ Ω, with the consequence that

Dr((φt)#ρ0, (φtn)#ρ0)
(26)

≤
∫

log

(
|φt(x)− φtn(x)|

r
+ 1

)
ρ0(x) dx

≤ log

(
Ch

r
+ 1

)
‖ρ0‖L1 .

This proves Lemma 6.1.

The statement in Lemma 6.2 is a stability estimate for the continuity equation
which has been recently proved in [23, Proposition 1] and builds up on [5, Proposi-
tion 2.2]. In order to have a self-contained representation, we will sketch its short
proof for the convenience of the reader.

We need some preparations. At the heart of the proof is a Crippa–De Lellis-
type argument, cf. [8], that allows to estimate integrals of difference quotients by Lp

norms of gradients. The argument makes use of the theory of the maximal function
operator M , defined for a function f on Rd by

(Mf)(x) = sup
r>0
−
∫
Br(x)

|f(y)| dy.

We will make use of two properties. First, maximal functions bound difference quo-
tients in the sense that

(47)
|f(x)− f(y)|
|x− y|

≤ C
(
(M∇f)(x) + (M∇f)(y)

)
for a.e. x, y. Furthermore, M maps Lp to Lp for any p ∈ (1,∞] with the estimate

(48) ‖Mf‖Lp ≤ C‖f‖Lp .

The first estimate is elementary and can be proved similarly to Morrey’s inequality.
In fact, its proof is contained in [13, p. 143, Theorem 3]. The second one can be found
in many standard references on harmonic analysis; see, e.g., [25, p. 5, Theorem 1].

In order to make use of the maximal function estimates, it will be convenient to
introduce a Sobolev extension of u to Rd. We thus let ū : Rd → Rd denote a Sobolev
function with ū = u in Ω and such that

(49) ‖ū‖W 1,p ≤ C‖u‖W 1,p .

The construction of ū can be found, for instance, in [13, p. 135, Theorem 1].

Proof of Lemma 6.2. We apply the estimate (25) with ρ1 = (φt)#ρ0 and ρ2 =
(φt)#ρ

0
h and obtain with the help of (47) and the marginal conditions (22)∣∣∣∣ ddtDr((φt)#ρ0, (φt)#ρ

0
h)

∣∣∣∣ ≤ C ∫
Ω

(M∇ū) |(φt)#(ρ0 − ρ0
h)| dx.
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Integration and Hölder’s inequality yield

Dr((φt)#ρ0, (φt)#ρ
0
h) ≤ Dr(ρ0, ρ

0
h) + C‖M∇ū‖L1(Lp)‖(φt)#(ρ0 − ρ0

h)‖L∞(Lq).

To bound the second term we invoke (48), (21), and (49) and obtain

‖M∇ū‖L1(Lp)‖(φt)#(ρ0 − ρ0
h)‖L∞(Lq) ≤ C‖∇u‖L1(Lp)Λ

1
p ‖ρ0 − ρh0‖Lq .

For the first term, we recall from the definition of ρ0
h in (5) that ρ0 and ρ0

h share
both the same mass on each cell K ∈ T . We may thus choose πK ∈ Π(χKρ0, χKρ

0
h)

and define π =
∑
K∈T πK . By construction, π is a transfer plan in Π(ρ0, ρ

0
h). In

particular,

Dr(ρ0, ρ
0
h) ≤

∑
K∈T

∫∫
log

(
|x− y|
r

+ 1

)
dπK(x, y) ≤ log

(
h

r
+ 1

)
‖ρ0 − ρ0

h‖L1 .

Since ‖ρ0
h‖L1 = ‖ρ0‖L1 , the statement follows with the triangle inequality.

Proof of Lemma 6.3. We use the sublinearity of the logarithm

Eρ0h

[
log

(
1

r

∣∣∣∣∣
n−1∑
`=0

ξ`

∣∣∣∣∣+ 1

)]
≤ 1

r
Eρ0h

[∣∣∣∣∣
n−1∑
`=0

ξ`

∣∣∣∣∣
]
,

apply the martingale estimate (39) from Lemma 5.5, and recall the identity ‖ρ0
h‖L1 =

‖ρ0‖L1 .

Proof of Lemma 6.4. We recall that the CFL condition in (11) guarantees that
|φs(x) − φt`(x)| ≤ Ch for a.e. x ∈ Ω and every s ∈ [t`, t`+1); cf. the proof of Lemma
6.1 above. It thus follows via (47) that∫ t`+1

t`

∫
|u(s, φs)− u(s, φt`)|ρ0

h dx ds

≤ Ch
∫ t`+1

t`

∫
(M∇ū)(s, φs)ρ

0
h dx ds+ Ch

∫ t`+1

t`

∫
(M∇ū)(s, φt`)ρ

0
h dx ds.

Summing over ` and applying Hölder’s inequality and the bound on the Jacobian (19)
thus yields

n−1∑
`=0

∫ t`+1

t`

∫
|u(s, φs)− u(s, φt`)|ρ0

h dx ds ≤ ChΛ
1
p ‖M∇ū‖L1(Lp)‖ρ0

h‖Lq .

It remains to invoke the fundamental inequality for maximal functions (48) and the
continuity of the extension operator (49) to deduce the statement of the lemma.

Proof of Lemma 6.5. We first apply Hölder’s inequality to the expectation,

Eρ0h

[
|u(s, φt`)− u(s, ψ`)|

|φt` − ψ` −
∑n−1
k=` ξ

k|+ r

]

≤ E1

[
|u(s, φt`)− u(s, ψ`)|p

|φt` − ψ`|p

]1/p

E(ρ0h)q

 |φt` − ψ`|q(
|φt` − ψ` −

∑n−1
k=` ξ

k|+ r
)q
1/q

.
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The second term on the right-hand side can be bounded with the help of the triangle
inequality and the martingale estimate (39) by

E(ρ0h)q

 |φt` − ψ`|q(
|φt` − ψ` −

∑n−1
k=` ξ

k|+ r
)q
1/q

≤ E(ρ0h)q [1]
1
q +

1

r
E(ρ0h)q

[∣∣∣∣∣
n−1∑
k=`

ξk

∣∣∣∣∣
q]1/q

≤ C
(

1 +
1

r

(√
h‖u‖L1(L∞) + h

))
‖ρ0
h‖Lq .

Notice that the martingale estimate extends to sums starting at ` via the triangle
inequality. For the first term, we have

E1

[
|u(s, φt`)− u(s, ψ`)|p

|φt` − ψ`|p

]
≤ C

∫
(M∇ū)(s, φt`(x))p dx+ C E1

[
(M∇ū)(s, ψ`)p

]
as a consequence of (47). Thus, with regard to (21), (29), (48), and (49), the latter
yields

E1

[
|u(s, φt`)− u(s, ψ`)|p

|φt` − ψ`|p

] 1
p

≤ C Λ
1
p ‖u(s, · )‖W 1,p .

Combining the previous estimates, integration over [t`, t`+1] and doing the summation
in ` yields the result.

Proof of Lemma 6.6. By the assumption of a Cartesian tessellation, we have for
each control volume K ∈ T the identity∑

L∼K
νKL(b · νKL)+ = b

for any vector b ∈ Rd. In particular, choosing b = −
∫ t`+1

t`
−
∫
K
u dx ds, where K ∈ T is

such that ψ` ∈ K, it holds that∫ t`+1

t`
u(s, ψ`) ds− δt u`h(ψ`)

=

∫ t`+1

t`
−
∫
K

(
u(s, ψ`)− u(s, x)

)
dx ds

+
∑
L∼K

νKL

(∫ t`+1

t`
−
∫
K

u · νKL dx ds

)+

−

(∫ t`+1

t`
−
∫
K|L

u · νKL dHd−1ds

)+


=: I + II.

In view of (47), the first term is controlled as follows:

|I| ≤ Ch

(∫ t`+1

t`
(M∇ū)(s, ψ`) ds+

∫ t`+1

t`
−
∫
K

(M∇ū)(s, x) dx ds

)
.

For the second one, we use the fact that (·)+ is 1-Lipschitz continuous and compute

|II | ≤
∑
L∼K

∣∣∣∣∣
∫ t`+1

t`
−
∫
K

u · νKL dx ds−
∫ t`+1

t`
−
∫
K|L

u · νKL dHd−1 ds

∣∣∣∣∣
≤ C

∫ t`+1

t`
−
∫
∂K

∣∣∣∣u−−∫
K

u dx

∣∣∣∣ dHd−1 ds.
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Now, we use the estimate∫
∂K

∣∣∣∣u−−∫
K

u dy

∣∣∣∣ dHd−1 ≤ C
∫
K

|∇u| dx,

which is a consequence of the trace estimate∫
∂K

|v| dHd−1 ≤ C
(

1

h

∫
K

|v| dx+

∫
K

|∇v| dx
)

(cf. (3)) applied to v = u− −
∫
K
v dx, and of the standard Poincaré estimate∫

K

∣∣∣∣u−−∫
K

u dy

∣∣∣∣ dx ≤ h∫
K

|∇u| dx.

Therewith, we obtain the estimate

|II | ≤ C

|∂K|

∫ t`+1

t`

∫
K

|∇u| dx ds ≤ Ch
∫ t`+1

t`
−
∫
K

|∇u| dx ds

because |K|/|∂K| . |K|1/d . h thanks to the isoperimetric inequality. Applying the
expectation and doing the push-forward then yields

Eρ0h

[∣∣∣∣∣
∫ t`+1

t`
u(s, ψ`) ds− δt u`h(ψ`)

∣∣∣∣∣
]
≤ Ch

∫ t`+1

t`

∫
(|M∇u|+ |∇u|)ψl#ρ0

h(dx) ds,

where we used the identity

Eρ0h

[
−
∫
K(ψ`)

f dx

]
= Eρ0h

[∫
J`
f dx

]
=
∑
K∈T

ρ`K

∫
K

f dx,

in which K(x) denotes the control volume in T that contains x. Hereby, in the
first expectation, ρ0

h is interpreted as a function from Ω to R and hence the first
expectation is an integral, whereas in the second one it is considered as a vector
in RT and the second expectation is thus a sum. We use Hölder’s inequality, the
fundamental estimate for maximal functions in (48), the continuity of the extension
operator (49), and estimate (29) to conclude.

7. Optimality. Our intention in this section is to demonstrate that our main
result is (almost) optimal with regard to two aspects:

1. We state a simple example which illustrates that within the setting of this
paper one cannot expect to prove a priori upper bounds on (polynomial)
convergence rates in strong Lebesgue norms. To be more specific, for any
small ε we find an initial configuration such that the approximate solution
given by the upwind scheme converges toward the exact solution of the conti-
nuity equation with a rate not faster than ε; see (52) below. Taking the limit
ε ↘ 0, this entails that uniform rates cannot exist for strong norms. It is
thus natural to seek estimates on the rate of weak convergence, as provided
in our Theorem 2.1.
Notice that this observation is not a contradiction with the error analysis
conducted, for instance, in [19, 20]. In these works, the authors study conver-
gence rates under regularity assumptions on the initial datum: They assume
that u0 has BV regularity. Our theory, however, is valid for data that are
merely integrable.
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2. Our computations show that our findings in Theorem 2.1 are almost optimal
in the following sense: For any small ε, there exist initial configurations for
which we can bound the rate of weak convergence from below by 1/2− ε; see
(53) below. This lower bound almost matches the 1/2-a priori upper bound
from Theorem 2.1.
Apart from the unpleasant fact that upper and lower bounds do not exactly
agree, there is a second mismatch with regard to the measures of weak conver-
gence. We are not able to bound the logarithmic Kantorovich–Rubinstein dis-
tance Dr suitably from below. Instead, we study the slightly larger Kantoro-
vich–Rubinstein distance with Euclidean cost

W1(ρ, ρh) = inf
π∈Π(ρ,ρh)

∫∫
|x− y| dπ(x, y).

This distance is frequently referred to as 1-Wasserstein distance. By the
Kantorovich–Rubinstein theorem [28, Theorem 1.14], it satisfies the duality
formula

(50) W1(ρ, ρh) = sup
ψ

{∫
ψ(ρ− ρh) dx : |ψ(x)− ψ(y)| ≤ |x− y|

}
.

Let us now consider the advection equation with a constant velocity field u ≡
U > 0 on R,

∂tρ+ U∂xρ = 0 and ρ(0, x) = ρ0(x).

Its exact solution is given by ρ(t, x) = ρ0(x − tU). To define the corresponding
approximate solution, let us choose the control volumes K = h[k, k+1) ⊂ R for some
small h > 0, and we write ρnk instead of ρnK for solutions of the upwind scheme (7).
Notice that the latter reduces to

ρn+1
k = ρnk −

δt U

h
ρnk +

δt U

h
ρnk−1 =

(
1− δt U

h

)
ρnk +

δt U

h
ρnk−1.

Next, we choose the time step δt size such that δt U = h/2, which in particular
satisfies the CFL condition (10). Moreover, the scheme becomes in this simple case
ρn+1
k = 1

2

(
ρnk + ρnk−1

)
. By iterating this identity, we arrive at

(51) ρnk =
1

2n

n∑
m=0

(
n

m

)
ρ0
k−m.

In order to prove the aforementioned optimality of our error estimate in Theo-
rem 2.1, we have to choose sufficiently rough data. For some parameter s ∈ [0, 1), we
choose the following (singular) Riemann problem like initial distribution:

ρ0(x) =


0 for x ≤ 0,

x−s for x ∈ (0, 1],

0 for x > 1.

By the explicit solution to the continuous problem, we have for any t > 0 and all
x ∈ [0, tU ] that ρh(t, x) − ρ(t, x) = ρh(t, x). This error is caused by the numerical
diffusion, and we expect it to be the main contribution to the total error.
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Our argumentation will be based on duality. We thus let ψ be a suitable non-
negative test function with suppψ ⊆ [0, tU ]. Further properties of ψ will be specified
later.

Suppose now that t ∈
[
tn, tn+1

)
for some positive even number n = 2(` + 1), so

that `+ 1 ≤ tU/h < `+ 3/2. We then have∫
ψ(ρh(t)− ρ(t)) dx =

∫ tU

0

ψ ρh(t) dx ≥ h
∑̀
k=0

ψkρ
n
k

(51)
= h

∑̀
k=0

n∑
m=0

1

2n

(
n

m

)
ψkρ

0
k−m,

where ψk = −
∫ (k+1)h

kh
ψ dx. Notice that ρ0

k−m = 0 for k < m. Hence, changing variables
and the order of summation, the latter turns into∫

ψ(ρh(t)− ρ(t)) dx ≥ 1

4

∑̀
m=0

1

4`

(
2`+ 2

`−m

)
h

m∑
k=0

ψ`−kρ
0
m−k︸ ︷︷ ︸

=:S(m)

.

Notice that the right-hand side is furthermore decreased if we restrict the summation
over m to the set J0, b

√
`cK and if we substitute the displayed binomial coefficient by(

2`
`−m

)
. Moreover, the de Moivre–Laplace theorem yields

1

4`

(
2`

`−m

)
=

(
2`

`−m

)(
1

2

)`−m(
1

2

)2`−(`−m)

≈ 1√
π`
e−

m2

` &
1√
`

for ` sufficiently large. Here, by a ≈ b we understand a = b(1 + o(1)) as ` � 1. We
thus have ∫

ψ(ρh(t)− ρ(t)) dx &
1√
`

b
√
`/2c∑

m=0

S(m).

We now address the L1 lower bound. For this purpose, we choose ψ(x) = 1 for
x ∈ [0, tU ], and hence also ψk = 1 for all k ∈ J0, `K, and we obtain

S(m) = h

m∑
k=0

ρ0
k =

∫ (m+1)h

0

ρ0 dx ≥
∫ mh

0

dx

xs
=

(mh)1−s

1− s
,

if h is small enough so that mh ≤ 1. Therewith, we arrive at

‖ρh(t)− ρ(t)‖L1 = sup
‖ψ‖L∞≤1

∫
ψ(ρh(t)− ρ(t)) dx &

h1−s

1− s
1√
`

b
√
`/2c∑

m=0

m1−s ∼
√
h

1−s

1− s
,

because ` ∼ tU/h ∼ 1/h for t ≥ 1 and U ∼ 1. Hence, setting ε = (1 − s)/2, this
computation shows that

(52) lim
h→0

h−ε‖ρh − ρ‖L1((0,1)×(0,R)) & 1

for any R sufficiently large.
The computation for the Wasserstein distance is similar. We choose the 1-

Lipschitz function ψ(x) = tU − x on [0, tU ] and obtain

S(m) ≈
∫ (m+1)h

0

(tU − (`−m)h− x)
dx

xs
≥ (mh)2−s

(1− s)(2− s)
.
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This leads to the lower bound

W1(ρh(t), ρ(t))
(50)

&
h2−s

(1− s)2(2− s)
√
`

b
√
`/2c∑

m=0

m2−s &

√
h

2−s

1− s
.

By choosing s = 1− ε, we thus find the almost optimal lower bound

(53) W1(ρh(t), ρ(t)) ∼
√
h

1+ε
.

We finally remark that it is not clear to us whether the weak convergence rates are
optimal for more regular, e.g., BV , data. Our numerical experiments in section 2.4
suggest that this could be the case; cf. Figure 2.

8. Discussion. Let us finally discuss possible extensions of our main result. It
would be desirable to remove the restriction to Cartesian meshes. The major obstacle
consists in the incompatibility of the construction of stochastic characteristics with
more general meshes. A way to overcome this in the Lipschitz setting was proposed
in [9]. At this point, it is not clear to us how to adapt this approach under the weaker
regularity assumptions of the present work.

Another question concerns the applicability of our approach to the implicit up-
wind scheme. We are positive that this application is possible. The argumentation,
however, rather relies on the Eulerian specification. This is ongoing research.

We remark that in order to establish stability estimates for continuity equations it
is not essential that the system is conservative. In fact, in [23], arbitrary source terms
are included in the right-hand side of (1). The restriction to conservative flows in the
present paper is, however, crucial as it allows for a clean probabilistic interpretation
of the scheme. In this context it should be mentioned that it is currently unclear how
to extend the theory from [23] to the transport equation in nondivergence form or to
nonlinear conservation laws or systems. For the same reason, the present convergence
analysis does not directly apply to the associated upwind schemes.

Finally, there is a way to make sense to the continuity equation in the case of
measure valued solutions. The underlying well-posedness theory is based on the notion
of renormalized solutions which was first introduced in [12]. Whether the present work
extends to this framework is not obvious to the authors.
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