Two-scale decomposition for metastable dynamics in continuous and discrete setting.

André Schlichting

joint work with Georg Menz (Stanford) and Martin Slowik (TU Berlin)

ERC Workshop on Energy/Entropy-Driven Systems and Applications

October 9, 2013

Metastability

A system possesses metastable states if:

- (most) initial states converge quickly to some metastable state
- the lifetime of the metastable state is very long
- the probability of return is very small

flatness of the state space

- Allen-Cahn equation (Otto-Reznikoff)
- Becker-Döring systems (Penrose)

- chemical reactions (Eyring-Kramers)
- Nucleation in spin systems (Bovier, den Hollander, Spitoni)

Metastability

A system possesses metastable states if:

- (most) initial states converge quickly to some metastable state
- the lifetime of the metastable state is very long
- the probability of return is very small

flatness of the state space

- Allen-Cahn equation (Otto-Reznikoff)
- Becker-Döring systems (Penrose)

- chemical reactions (Eyring-Kramers)
- Nucleation in spin systems (Bovier, den Hollander, Spitoni)

Metastability

A system possesses metastable states if:

- (most) initial states converge quickly to some metastable state
- the lifetime of the metastable state is very long
- the probability of return is very small

- chemical reactions (Eyring-Kramers)
- Nucleation in spin systems (Bovier, den Hollander, Spitoni)

Metastability

A system possesses metastable states if:

- (most) initial states converge quickly to some metastable state
- the lifetime of the metastable state is very long
- the probability of return is very small

- chemical reactions (Eyring-Kramers)
- Nucleation in spin systems (Bovier, den Hollander, Spitoni)

Metastability

A system possesses metastable states if:

- $\bullet \ (most)$ initial states converge quickly to some metastable state
- the lifetime of the metastable state is very long
- the probability of return is very small

Quantification for Metastability in Fokker-Planck equation

Spectral characterization vs. energetic/entropic characterization Fokker-Planck equation with potential $H : \mathbb{R}^n \to \mathbb{R}$:

 $\partial_t u_t = \nabla \cdot (\varepsilon \nabla u_t + u_t \nabla H)$ equilibrium: $\mu = \exp(-\varepsilon^{-1}H)$

Spectral gap λ: Exponential convergence of ∫ |u − μ|² dx
 [JKO98]: gradient flow of energy

$$\mathcal{E}(u) = \int u \log u \, \mathrm{d}x + \varepsilon^{-1} \int H u \, \mathrm{d}x = \int \frac{u}{\mu} \log \frac{u}{\mu} \, \mathrm{d}\mu$$

Logarithmic Sobolev inequality \Rightarrow exponential convergence

Goal: Necessary: Outlook:

Quantification for Metastability in Fokker-Planck equation

Spectral characterization vs. energetic/entropic characterization Fokker-Planck equation with potential $H : \mathbb{R}^n \to \mathbb{R}$:

 $\partial_t u_t = \nabla \cdot (\varepsilon \nabla u_t + u_t \nabla H)$ equilibrium: $\mu = \exp(-\varepsilon^{-1}H)$

• Spectral gap λ : Exponential convergence of $\int |u - \mu|^2 dx$

• [JKO98]: gradient flow of energy

$$\mathcal{E}(u) = \int u \log u \, \mathrm{d}x + \varepsilon^{-1} \int Hu \, \mathrm{d}x = \int \frac{u}{\mu} \log \frac{u}{\mu} \, \mathrm{d}\mu$$

Logarithmic Sobolev inequality \Rightarrow exponential convergence

Goal: Necessary: Outlook:

Quantification for Metastability in Fokker-Planck equation

Spectral characterization vs. energetic/entropic characterization Fokker-Planck equation with potential $H : \mathbb{R}^n \to \mathbb{R}$:

 $\partial_t u_t = \nabla \cdot (\varepsilon \nabla u_t + u_t \nabla H)$ equilibrium: $\mu = \exp(-\varepsilon^{-1}H)$

• Spectral gap $\lambda :$ Exponential convergence of $\int |u-\mu|^2 \,\mathrm{d} x$

• [JKO98]: gradient flow of energy

$$\mathcal{E}(u) = \int u \log u \, \mathrm{d}x + \varepsilon^{-1} \int Hu \, \mathrm{d}x = \int \frac{u}{\mu} \log \frac{u}{\mu} \, \mathrm{d}\mu$$

Logarithmic Sobolev inequality \Rightarrow exponential convergence

Goal: Necessary: Outlook:

Quantification for Metastability in Fokker-Planck equation

Spectral characterization vs. energetic/entropic characterization Fokker-Planck equation with potential $H : \mathbb{R}^n \to \mathbb{R}$:

 $\partial_t u_t = \nabla \cdot (\varepsilon \nabla u_t + u_t \nabla H)$ equilibrium: $\mu = \exp(-\varepsilon^{-1}H)$

• Spectral gap $\lambda :$ Exponential convergence of $\int |u-\mu|^2 \,\mathrm{d} x$

• [JKO98]: gradient flow of energy

$$\mathcal{E}(u) = \int u \log u \, \mathrm{d}x + \varepsilon^{-1} \int Hu \, \mathrm{d}x = \int \frac{u}{\mu} \log \frac{u}{\mu} \, \mathrm{d}\mu$$

Logarithmic Sobolev inequality \Rightarrow exponential convergence

Goal: Necessary: Outlook:

Quantification for Metastability in Fokker-Planck equation

Spectral characterization vs. energetic/entropic characterization Fokker-Planck equation with potential $H : \mathbb{R}^n \to \mathbb{R}$:

 $\partial_t u_t = \nabla \cdot (\varepsilon \nabla u_t + u_t \nabla H)$ equilibrium: $\mu = \exp(-\varepsilon^{-1}H)$

• Spectral gap $\lambda :$ Exponential convergence of $\int |u-\mu|^2 \,\mathrm{d} x$

• [JKO98]: gradient flow of energy

$$\mathcal{E}(u) = \int u \log u \, \mathrm{d}x + \varepsilon^{-1} \int Hu \, \mathrm{d}x = \int \frac{u}{\mu} \log \frac{u}{\mu} \, \mathrm{d}\mu$$

Logarithmic Sobolev inequality \Rightarrow exponential convergence

Goal: Necessary:

Quantification for Metastability in Fokker-Planck equation

Spectral characterization vs. energetic/entropic characterization Fokker-Planck equation with potential $H : \mathbb{R}^n \to \mathbb{R}$:

 $\partial_t u_t = \nabla \cdot (\varepsilon \nabla u_t + u_t \nabla H)$ equilibrium: $\mu = \exp(-\varepsilon^{-1}H)$

• Spectral gap $\lambda :$ Exponential convergence of $\int |u-\mu|^2 \,\mathrm{d} x$

• [JKO98]: gradient flow of energy

$$\mathcal{E}(u) = \int u \log u \, \mathrm{d}x + \varepsilon^{-1} \int Hu \, \mathrm{d}x = \int \frac{u}{\mu} \log \frac{u}{\mu} \, \mathrm{d}\mu$$

Logarithmic Sobolev inequality \Rightarrow exponential convergence

Goal: Necessary: Outlook:

$$\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$$

Definition

 μ satisfies the Poincaré inequality $\mathsf{PI}(\lambda)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{var}_{\mu}(f) := \int \left(f - \int f d\mu \right)^2 d\mu \leq \frac{1}{\lambda} \int |\nabla f|^2 d\mu. \qquad \operatorname{PI}(\lambda)$$

and the logarithmic Sobolev inequality $LSI(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\mathsf{Ent}_{\mu}(f) := \int f \log \frac{f}{\int f d\mu} d\mu \leq \frac{1}{\alpha} \int \frac{|\nabla f|^2}{2f} d\mu.$$
 $\mathsf{LSI}(\alpha)$

PI(λ) and LSI(α) imply exponential convergence to μ : PI(λ) \Rightarrow var_{μ}(f_t) \leq var_{μ}(f_0) $e^{-2\lambda\varepsilon t}$ LSI(α) \Rightarrow Ent_{ν}(f_t) \leq Ent_{ν}(f_0) $e^{-2\alpha\varepsilon t}$

André Schlichting (IAM Bonn)

$$\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$$

Definition

 μ satisfies the Poincaré inequality $\mathsf{PI}(\lambda)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\mathsf{var}_\mu(f) \mathrel{\mathop:}= \int \left(f - \int f \mathsf{d} \mu
ight)^2 \mathsf{d} \mu \leq rac{1}{\lambda} \int |
abla f|^2 \, \mathsf{d} \mu. \qquad \mathsf{PI}(\lambda)$$

and the logarithmic Sobolev inequality $\mathsf{LSI}(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{Ent}_{\mu}(f) := \int f \log \frac{f}{\int f d\mu} d\mu \leq \frac{1}{\alpha} \int \frac{|\nabla f|^2}{2f} d\mu.$$
 LS

 $\mathsf{PI}(\lambda)$ and $\mathsf{LSI}(\alpha)$ imply exponential convergence to μ :

$$\begin{aligned} \mathsf{PI}(\lambda) \ \Rightarrow \ \mathsf{var}_{\mu}(f_t) \leq \mathsf{var}_{\mu}(f_0) e^{-2\lambda\varepsilon t} \\ \mathsf{SI}(\alpha) \ \Rightarrow \ \mathsf{Ent}_{\mu}(f_t) \leq \mathsf{Ent}_{\mu}(f_0) e^{-2\alpha\varepsilon t} \end{aligned}$$

André Schlichting (IAM Bonn)

Two-scale decomposition

universitätbo

$$\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$$

Definition

 μ satisfies the Poincaré inequality $\mathsf{PI}(\lambda)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\mathsf{var}_{\mu}(f) \mathrel{\mathop:}= \int \left(f - \int f \mathsf{d}\mu\right)^2 \mathsf{d}\mu \leq rac{1}{\lambda} \int |
abla f|^2 \,\mathsf{d}\mu. \qquad \mathsf{PI}(\lambda)$$

and the logarithmic Sobolev inequality $\mathsf{LSI}(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\mathsf{Ent}_{\mu}(f) := \int f \log \frac{f}{\int f d\mu} d\mu \leq \frac{1}{\alpha} \int \frac{|\nabla f|^2}{2f} d\mu.$$
 $\mathsf{LSI}(\alpha)$

 $PI(\lambda)$ and $LSI(\alpha)$ imply exponential convergence to μ :

$$\mathsf{PI}(\lambda) \Rightarrow \mathsf{var}_{\mu}(f_t) \le \mathsf{var}_{\mu}(f_0) e^{-2\lambda\varepsilon t} \\ \mathsf{SI}(\alpha) \Rightarrow \mathsf{Ent}_{\mu}(f_t) \le \mathsf{Ent}_{\mu}(f_0) e^{-2\alpha\varepsilon t}$$

André Schlichting (IAM Bonn)

$$\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$$

Definition

 μ satisfies the Poincaré inequality $\mathsf{PI}(\lambda)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\mathsf{var}_{\mu}(f) \mathrel{\mathop:}= \int \left(f - \int f \mathsf{d}\mu\right)^2 \mathsf{d}\mu \leq rac{1}{\lambda} \int |
abla f|^2 \,\mathsf{d}\mu. \qquad \mathsf{PI}(\lambda)$$

and the logarithmic Sobolev inequality $\mathsf{LSI}(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{Ent}_{\mu}(f^{2}) := \int f^{2} \log \frac{f^{2}}{\int f^{2} d\mu} d\mu \leq \frac{2}{\alpha} \int |\nabla f|^{2} d\mu. \qquad \qquad \mathsf{LSI}(\alpha)$$

 $PI(\lambda)$ and $LSI(\alpha)$ imply exponential convergence to μ :

$$\begin{aligned} \mathsf{PI}(\lambda) \ \Rightarrow \ \mathsf{var}_{\mu}(f_{0}) \leq \mathsf{var}_{\mu}(f_{0}) e^{-2\lambda\varepsilon t} \\ \mathsf{SI}(\alpha) \ \Rightarrow \ \mathsf{Ent}_{\mu}(f_{t}) \leq \mathsf{Ent}_{\mu}(f_{0}) e^{-2\alpha\varepsilon t} \end{aligned}$$

André Schlichting (IAM Bonn)

$$\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$$

Definition

 μ satisfies the Poincaré inequality $\mathsf{Pl}(\lambda)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\mathsf{var}_{\mu}(f) \mathrel{\mathop:}= \int \left(f - \int f \mathsf{d}\mu\right)^2 \mathsf{d}\mu \leq rac{1}{\lambda} \int |
abla f|^2 \,\mathsf{d}\mu. \qquad \mathsf{PI}(\lambda)$$

and the logarithmic Sobolev inequality $\mathsf{LSI}(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\mathsf{Ent}_{\mu}(f^2) := \int f^2 \log \frac{f^2}{\int f^2 d\mu} d\mu \le \frac{2}{\alpha} \int |\nabla f|^2 d\mu. \qquad \mathsf{LSI}(\alpha)$$

 $PI(\lambda)$ and $LSI(\alpha)$ imply exponential convergence to μ :

$$\begin{aligned} \mathsf{PI}(\lambda) \ \Rightarrow \ \mathsf{var}_{\mu}(f_t) \leq \mathsf{var}_{\mu}(f_0) e^{-2\lambda\varepsilon t} \\ \mathsf{LSI}(\alpha) \ \Rightarrow \ \mathsf{Ent}_{\mu}(f_t) \leq \mathsf{Ent}_{\mu}(f_0) e^{-2\alpha\varepsilon t}. \end{aligned}$$

André Schlichting (IAM Bonn)

Goal: Optimal constants in PI and LSI

Accurate estimates of λ and α in the regime $\varepsilon \ll 1$:

$$\lambda = C_{\lambda}(\varepsilon) e^{-\frac{\Delta H}{\varepsilon}} (1 + o(1)) \quad \text{and} \quad \alpha = C_{\alpha}(\varepsilon) e^{-\frac{\Delta H}{\varepsilon}} (1 + o(1)).$$

Goal: Optimal constants in PI and LSI

Accurate estimates of λ and α in the regime $\varepsilon \ll 1$:

$$\lambda = \mathcal{C}_{\lambda}(\varepsilon)e^{-\frac{\Delta H}{\varepsilon}}(1+o(1)) \qquad \text{and} \qquad \alpha = \mathcal{C}_{\alpha}(\varepsilon)e^{-\frac{\Delta H}{\varepsilon}}(1+o(1)).$$

$$\mathrm{d}X_t = -\nabla H(X_t) \,\mathrm{d}t + \sqrt{2\varepsilon} \,\mathrm{d}W_t$$

- particle follows abla H as long as $|
 abla H| \sim 1$
- noise is dominant, if $|\nabla H| \lesssim \sqrt{\varepsilon}$

Figure : Trajectory for $\varepsilon = 0.4$

Figure : Trajectory for $\varepsilon = 0.2$

Figure : Trajectory for $\varepsilon = 0.1$

Figure : Trajectory for $\varepsilon = 0.05$ (red $\varepsilon = 0$)

André Schlichting (IAM Bonn)

Two scales by decomposition à la $[GOVW09]^1$

- The partition $\biguplus_i \Omega_i = \mathbb{R}^n$ is called admissible for μ if:
 - (i) For each local minimum $m_i \in \mathcal{M}$ exists Ω_i with $m_i \in \Omega_i$
 - (ii) The partition sum of each Ω_i is approximately Gaussian

$$\mu(\Omega_i)Z_{\mu} = \frac{(2\pi\varepsilon)^{\frac{n}{2}}}{\sqrt{\det \nabla^2 H(m_i)}} \exp\left(-\frac{H(m_i)}{\varepsilon}\right) (1+o(1))\,.$$

Restricted measures: $\mu_i := \mu \llcorner \Omega_i$, i = 0, 1.

Macroscopic measures $\bar{\mu}$ on $\{0,1\}$: $\bar{\mu} := Z_0 \delta_0 + Z_1 \delta_1.$

Mixture representation:

$$\mu = Z_0\mu_0 + Z_1\mu_1$$
 with $Z_i := \mu(\Omega_i)$.

¹N. Grunewald, F. Otto, C. Villani, and M. G. Westdickenberg, *A two-scäle approach*¹⁰*to* ¹³ *logarithmic Sobolev inequalities and the hydrodynamic limit,* Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 45:**2**, 2009.

André Schlichting (IAM Bonn)

Splitting

Ideas motivated from [CM10]²

$$\operatorname{var}_{\mu}(f) = \underbrace{Z_{0} \operatorname{var}_{\mu_{0}}(f) + Z_{1} \operatorname{var}_{\mu_{1}}(f)}_{\operatorname{local variances}} + \underbrace{Z_{0} Z_{1} \underbrace{\left(\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f)\right)^{2}}_{\operatorname{mean-difference}}}_{\operatorname{mean-difference}}$$

$$\operatorname{Ent}_{\mu}(f^{2}) = \underbrace{Z_{0} \operatorname{Ent}_{\mu_{0}}(f^{2}) + Z_{1} \operatorname{Ent}_{\mu_{1}}(f^{2})}_{\operatorname{Ent}_{\mu_{1}}(f^{2})} + \underbrace{\operatorname{Ent}_{\mu}\left(\mathbb{E}_{\mu_{\bullet}}(f^{2})\right)}_{\operatorname{Ent}_{\mu}\left(\mathbb{E}_{\mu_{\bullet}}(f^{2})\right)}$$

where
$$\Lambda(Z_0, Z_1) = \frac{Z_0 - Z_1}{\log Z_0 - \log Z_1}$$
 is the logarithmic mean.

Expect from heuristics:

- good estimate for local variances/entropies
- exponential estimate for mean-difference

²D. Chafaï and F. Malrieu, *On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities*, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 46:**1**, 2010.

André Schlichting (IAM Bonn)

Splitting

Ideas motivated from [CM10]²

$$\operatorname{var}_{\mu}(f) = \underbrace{Z_{0} \operatorname{var}_{\mu_{0}}(f) + Z_{1} \operatorname{var}_{\mu_{1}}(f)}_{\operatorname{local variances}} + Z_{0}Z_{1} \underbrace{\left(\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f) \right)^{2}}_{\operatorname{mean-difference}} \\ \operatorname{Ent}_{\mu}(f^{2}) \leq \underbrace{Z_{0} \operatorname{Ent}_{\mu_{0}}(f^{2}) + Z_{1} \operatorname{Ent}_{\mu_{1}}(f^{2})}_{+ \frac{Z_{0}Z_{1}}{\Lambda(Z_{0}, Z_{1})}} \left(\operatorname{var}_{\mu_{0}}(f) + \operatorname{var}_{\mu_{1}}(f) + \left(\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f) \right)^{2} \right),$$

where
$$\Lambda(Z_0, Z_1) = \frac{Z_0 - Z_1}{\log Z_0 - \log Z_1}$$
 is the logarithmic mean.

Expect from heuristics:

- good estimate for local variances/entropies
- exponential estimate for mean-difference

²D. Chafaï and F. Malrieu, *On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities*, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 46:**1**, 2010.

André Schlichting (IAM Bonn)

Splitting

Ideas motivated from [CM10]²

$$\operatorname{var}_{\mu}(f) = \underbrace{Z_{0} \operatorname{var}_{\mu_{0}}(f) + Z_{1} \operatorname{var}_{\mu_{1}}(f)}_{\operatorname{local variances}} + Z_{0}Z_{1} \underbrace{\left(\underbrace{\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f) \right)^{2}}_{\operatorname{mean-difference}} \right)^{2}}_{\operatorname{mean-difference}}$$

$$\operatorname{Ent}_{\mu}(f^{2}) \leq \underbrace{Z_{0} \operatorname{Ent}_{\mu_{0}}(f^{2}) + Z_{1} \operatorname{Ent}_{\mu_{1}}(f^{2})}_{+ Z_{1} \operatorname{Ent}_{\mu_{1}}(f^{2})} + \frac{Z_{0}Z_{1}}{\Lambda(Z_{0}, Z_{1})} \left(\operatorname{var}_{\mu_{0}}(f) + \operatorname{var}_{\mu_{1}}(f) + \left(\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f) \right)^{2} \right),$$

where $\Lambda(Z_0, Z_1) = \frac{Z_0 - Z_1}{\log Z_0 - \log Z_1}$ is the logarithmic mean.

Expect from heuristics:

- good estimate for local variances/entropies
- exponential estimate for mean-difference

²D. Chafaï and F. Malrieu, *On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities*, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 46:**1**, 2010.

André Schlichting (IAM Bonn)

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$\lambda_{loc}^{-1} = O(\varepsilon)$$
 and $\alpha_{loc}^{-1} = O(1).$

- PI is as good as for convex potential
- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate [Menz, S. 2012])

$$\left(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f\right)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{R}{2}}} \frac{2\pi\varepsilon\sqrt{\left|\det\nabla^2 H(s_{0,1})\right|}}{\left|\lambda^-(\nabla^2 H(s_{0,1}))\right|} \ e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \,\mathrm{d}\mu.$$

' \lesssim '': up to multiplicative error 1+o(1) as arepsilon o 0.

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$\lambda_{loc}^{-1} = O(\varepsilon)$$
 and $\alpha_{loc}^{-1} = O(1).$

• PI is as good as for convex potential

- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate [Menz, S. 2012])

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \; \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} \; e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \, \mathrm{d}\mu.$$

 \lesssim ": up to multiplicative error 1+o(1) as arepsilon o 0.

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$\lambda_{loc}^{-1} = O(\varepsilon)$$
 and $\alpha_{loc}^{-1} = O(1)$.

- PI is as good as for convex potential
- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate [Menz, S. 2012])

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \; \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} \; e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \, \mathrm{d}\mu.$$

' \lesssim '': up to multiplicative error 1+o(1) as arepsilon o 0.

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$\lambda_{loc}^{-1} = O(\varepsilon)$$
 and $\alpha_{loc}^{-1} = O(1)$.

- PI is as good as for convex potential
- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate [Menz, S. 2012])

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \; \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} \; e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \, \mathrm{d}\mu.$$

 \lesssim ": up to multiplicative error 1+o(1) as arepsilon o 0.

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$\lambda_{loc}^{-1} = O(arepsilon)$$
 and $lpha_{loc}^{-1} = O(1).$

- PI is as good as for convex potential
- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate [Menz, S. 2012])

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \ \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} \ e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \,\mathrm{d}\mu.$$

" \lesssim ": up to multiplicative error 1 + o(1) as $\varepsilon \to 0$.

Eyring-Kramers formula

Corollary

The measure μ satisfies $PI(\lambda)$ and $LSI(\alpha)$ with

$$\frac{1}{\lambda} \approx Z_0 Z_1 \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \ \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} e^{\frac{H(s_{0,1})}{\varepsilon}} \quad \text{and} \quad \frac{2}{\alpha} \approx \frac{1}{\Lambda(Z_0,Z_1) \ \lambda}.$$

Asymptotic evaluation of the factor $\Lambda(Z_0,Z_1)$ for two special cases:

$$H(m_0) < H(m_1): \quad \frac{\lambda}{\alpha} \approx \frac{1}{2} \left(\frac{H(m_1) - H(m_0)}{\varepsilon} + \log\left(\frac{\kappa_0}{\kappa_1}\right) \right) = O(\varepsilon^{-1})$$
$$H(m_0) = H(m_1): \quad \frac{\lambda}{\alpha} \approx \frac{\frac{\kappa_0 + \kappa_1}{2}}{\Lambda(\kappa_0, \kappa_1)} = O(1),$$

Eyring-Kramers formula

Corollary

The measure μ satisfies $PI(\lambda)$ and $LSI(\alpha)$ with

$$\frac{1}{\lambda} \approx Z_0 Z_1 \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \; \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} e^{\frac{H(s_{0,1})}{\varepsilon}} \quad \text{and} \quad \frac{2}{\alpha} \approx \frac{1}{\Lambda(Z_0,Z_1)\;\lambda}.$$

Asymptotic evaluation of the factor $\Lambda(Z_0, Z_1)$ for two special cases:

$$\begin{split} H(m_0) < H(m_1) : \quad &\frac{\lambda}{\alpha} \approx \frac{1}{2} \left(\frac{H(m_1) - H(m_0)}{\varepsilon} + \log\left(\frac{\kappa_0}{\kappa_1}\right) \right) = O(\varepsilon^{-1}) \\ H(m_0) = H(m_1) : \quad &\frac{\lambda}{\alpha} \approx \frac{\frac{\kappa_0 + \kappa_1}{2}}{\Lambda(\kappa_0, \kappa_1)} = O(1), \\ & \text{where } \kappa_i := \sqrt{\det \nabla^2 H(m_i)} \end{split}$$

Proof: Local PI and LSI

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$\lambda_{loc}^{-1} = O(\varepsilon)$$
 and $\alpha_{loc}^{-1} = O(1).$

- lack of convexity of H on Ω
 ⇒ rules out Bakry-Émery criterion
- non-exponential behavior of constants
 ⇒ rules out Holley-Stroock perturbation principle
- optimality available in one dimension
 ⇒ Muckenhoupt and Bobkov/Götze functiona

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

 $\lambda_{loc}^{-1} = O(\varepsilon)$ and $\alpha_{loc}^{-1} = O(1)$.

- lack of convexity of H on Ω \Rightarrow rules out Bakry-Émery criterion
- non-exponential behavior of constants
 ⇒ rules out Holley-Stroock perturbation principle
- optimality available in one dimension
 ⇒ Muckenhoupt and Bobkov/Götze functional

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$\lambda_{loc}^{-1} = O(\varepsilon)$$
 and $\alpha_{loc}^{-1} = O(1).$

- lack of convexity of H on Ω
 ⇒ rules out Bakry-Émery criterion
- non-exponential behavior of constants
 ⇒ rules out Holley-Stroock perturbation principle
- optimality available in one dimension
 ⇒ Muckenhoupt and Bobkov/Götze functional

Theorem (Local PI and LSI [Menz, S. 2012])

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\lambda_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$\lambda_{loc}^{-1} = O(\varepsilon)$$
 and $\alpha_{loc}^{-1} = O(1).$

- lack of convexity of H on Ω \Rightarrow rules out Bakry-Émery criterion
- non-exponential behavior of constants
 ⇒ rules out Holley-Stroock perturbation principle
- optimality available in one dimension
 - ⇒ Muckenhoupt and Bobkov/Götze functional

Proof: Local PI and LSI via Lyapunov condition universitation in

Technique developed by Bakry, Barthe, Cattiaux, Guillin, Wang and Wu 2008-

Definition (Lyapunov condition on domains)

L satisfies a Lyapunov condition with constants $\lambda, b > 0$ and some $U \subset \Omega$, if there exists a Lyapunov function $W : \Omega \to [1, \infty)$ satisfying

$$\frac{LW}{\varepsilon W} \leq -\lambda + b \, \mathbb{1}_U.$$

and Neumann boundary condition on Ω , such that integration by parts holds $\int_{\Omega} f(-LW) \, \mathrm{d}\mu = \varepsilon \int_{\Omega} \langle \nabla f, \nabla W \rangle \, \mathrm{d}\mu.$

Theorem ([BBCG08], [Menz, S. '12 for domains])

Suppose L satisfies a Lyapunov condition on Ω and $\mu \sqcup U$ satisfies $PI(\lambda_U)$, then $\mu \llcorner \Omega$ satisfies $PI(\lambda_\Omega)$ with

$$\lambda_{\Omega} \geq \frac{\lambda}{b + \lambda_U} \lambda_U$$

André Schlichting (IAM Bonn)

Proof: Local PI and LSI via Lyapunov condition universitation III

Technique developed by Bakry, Barthe, Cattiaux, Guillin, Wang and Wu 2008-

Definition (Lyapunov condition on domains)

L satisfies a Lyapunov condition with constants $\lambda, b > 0$ and some $U \subset \Omega$, if there exists a Lyapunov function $W : \Omega \to [1, \infty)$ satisfying

$$\frac{LW}{\varepsilon W} \leq -\lambda + b \, \mathbb{1}_U.$$

and Neumann boundary condition on Ω , such that integration by parts holds $\int_{\Omega} f(-LW) \, \mathrm{d}\mu = \varepsilon \int_{\Omega} \langle \nabla f, \nabla W \rangle \, \mathrm{d}\mu.$

Theorem ([BBCG08], [Menz, S. '12 for domains])

Suppose L satisfies a Lyapunov condition on Ω and $\mu \sqcup U$ satisfies $PI(\lambda_U)$, then $\mu \llcorner \Omega$ satisfies $PI(\lambda_\Omega)$ with

$$\lambda_{\Omega} \geq \frac{\lambda}{b + \lambda_U} \lambda_U$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \ \mathbb{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz $W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$, where \tilde{H} is an ε -perturbation of H $\frac{\tilde{L}W}{\tilde{H}} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{2}|\nabla\tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$

▶ if x is $\sqrt{\varepsilon}$ -away from critical points: $\varepsilon^{-1} |\nabla \tilde{H}(x)|^2 \ge 4\lambda$ ▶ if x is $\sqrt{\varepsilon}$ -nearby a critical point of index $k \ge 1$

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \ \mathbb{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz
$$W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$$
, where \tilde{H} is an ε -perturbation of H
$$\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{4\varepsilon}|\nabla\tilde{H}|^2 \leq -\lambda.$$

if x is √ε-away from critical points: ε⁻¹|∇Ĥ(x)|² ≥ 4λ
 if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \ \mathbb{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz
$$W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$$
, where \tilde{H} is an ε -perturbation of H
$$\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{4\varepsilon}|\nabla\tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$$

if x is √ε-away from critical points: ε⁻¹|∇Ĥ(x)|² ≥ 4λ
 if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \, \mathbbm{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz
$$W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$$
, where \tilde{H} is an ε -perturbation of H
$$\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{4\varepsilon}|\nabla\tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$$

if x is √ε-away from critical points: ε⁻¹|∇Ĥ(x)|² ≥ 4λ
 if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \, \mathbbm{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz $W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$, where \tilde{H} is an ε -perturbation of H $\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{4\varepsilon}|\nabla\tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$

if x is √ε-away from critical points: ε⁻¹|∇Ĥ(x)|² ≥ 4λ
if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \, \mathbbm{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz $W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$, where \tilde{H} is an ε -perturbation of H $\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{4\varepsilon}|\nabla\tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$

if x is √ε-away from critical points: ε⁻¹|∇H̃(x)|² ≥ 4λ
if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \, \mathbbm{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz $W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$, where \tilde{H} is an ε -perturbation of H $\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{4\varepsilon}|\nabla\tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$

if x is √ε-away from critical points: ε⁻¹|∇H̃(x)|² ≥ 4λ
if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Construction of Lyapunov function

Figure : *H* around a saddle point

 $ilde{H}$ is quadratic perturbation of H in $\sqrt{arepsilon}$ -neighborhoods of critical points:

$$\sup_{x} \left| H(x) - \tilde{H}(x) \right| = O(\varepsilon).$$

Construction of Lyapunov function

Figure : *H* around a saddle point

Figure : \tilde{H} around a saddle point

 \tilde{H} is quadratic perturbation of H in $\sqrt{\varepsilon}$ -neighborhoods of critical points:

$$\sup_{x} \left| H(x) - \tilde{H}(x) \right| = O(\varepsilon).$$

Goal: Find a good estimate for C in

$$(\mathbb{E}_{\mu_0}(f)-\mathbb{E}_{\mu_1}(f))^2\leq C\int |
abla f|^2\,\mathrm{d}\mu.$$

•

Approximation step

Goal: Find a good estimate for C in $(\mathbb{E}_{\mu_0}(f) - \mathbb{E}_{\mu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

Step 1: Approximate μ_0 and μ_1 by truncated Gaussians ν_0 and ν_1 :

 $u_i \sim \mathcal{N}(m_i, \varepsilon \Sigma_i) \llcorner B_{\sqrt{\varepsilon}}(m_i) \text{ with } \Sigma_i^{-1} := \nabla^2 H(m_i).$

Introduce ν_0 and ν_1 as coupling:

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \le (1+\tau)\underbrace{(\mathbb{E}_{\nu_0}f - \mathbb{E}_{\nu_1}f)^2}_{(1+\tau)}$$

transport argument

$$+2(1+\tau^{-1})\sum_{i=\{0,1\}}\underbrace{(\mathbb{E}_{\mu_i}f-\mathbb{E}_{\nu_i}f)^2}_{\text{approximation bound}}$$

 \Rightarrow Approximation bound follows from local PI and local LSI.

Approximation step

Goal: Find a good estimate for C in $(\mathbb{E}_{\mu_0}(f) - \mathbb{E}_{\mu_1}(f))^2 \leq C \int |
abla f|^2 \,\mathrm{d}\mu.$

Step 1: Approximate μ_0 and μ_1 by truncated Gaussians ν_0 and ν_1 :

 $u_i \sim \mathcal{N}(m_i, \varepsilon \Sigma_i) \llcorner B_{\sqrt{\varepsilon}}(m_i) \text{ with } \Sigma_i^{-1} := \nabla^2 H(m_i).$

Introduce ν_0 and ν_1 as coupling:

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \leq (1+\tau)\underbrace{(\mathbb{E}_{\nu_0}f - \mathbb{E}_{\nu_1}f)^2}_{\mathbf{L}}$$

transport argument

$$+ 2(1 + au^{-1}) \sum_{i = \{0,1\}} \underbrace{(\mathbb{E}_{\mu_i} f - \mathbb{E}_{
u_i} f)^2}_{ ext{approximation bound}}$$

 \Rightarrow Approximation bound follows from local PI and local LSI.

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \, \mathrm{d}\mu.$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 d\mu.$

$$\left(\int f\,\mathrm{d}\nu_0 - \int f\,\mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s}(f\circ\Phi_s)\,\mathrm{d}s\,\mathrm{d}\nu_0\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int \int_0^1 \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s \circ \Phi_s^{-1}, \nabla f \right\rangle \mathrm{d}\nu_s \, \mathrm{d}s\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s \circ \Phi_s^{-1}, \nabla f \right\rangle \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}\mu \, \mathrm{d}s\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$
$$= \left(\int \int_0^1 \left\langle \dot{\Phi}_s \circ \Phi_s^{-1}, \nabla f \right\rangle \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}s \, \mathrm{d}\mu\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$
$$= \left(\int \left\langle \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \, \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}s, \nabla f \right\rangle \mathrm{d}\mu\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 d\mu.$

$$\begin{split} \left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 &= \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2 \\ &= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2 \\ &= \left(\int \left\langle \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \, \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}s, \nabla f \right\rangle \mathrm{d}\mu\right)^2 \\ &\leq \int \left|\int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \, \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}s\right|^2 \mathrm{d}\mu \int |\nabla f|^2 \, \mathrm{d}\mu \end{split}$$

Sideremark: Weighted transport distance

Definition

For $\nu_0, \nu_1 \ll \mu$ define the weighted transport distance by

$$\mathcal{T}^2_{\mu}(\nu_0,\nu_1) = \inf_{\{\Phi_s\}} \int \left| \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \; \frac{\mathsf{d}\nu_s}{\mathsf{d}\mu} \; \mathsf{d}s \right|^2 \mathsf{d}\mu.$$

 $(\Phi_s)_{s\in[0,1]}$ is absolutely continuous in s: $(\Phi_s)_{\sharp}\nu_0 = \nu_s$.

Mean-difference revisited: Identify $\int |
abla f|^2 \,\mathrm{d}\mu = \|f\|^2_{\dot{H}^1(\mu)}$, then

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(_{\dot{H}^{-1}(\mu)} \langle \nu_0 - \nu_1, f \rangle_{\dot{H}^1(\mu)}\right)^2 \\ \leq \mathcal{T}^2_{\mu}(\nu_0, \nu_1) \, \|f\|^2_{\dot{H}^1(\mu)} \, .$$

Indeed, it holds: $\mathcal{T}^2_{\mu}(
u_0,
u_1) = \|
u_0 -
u_1\|^2_{\dot{H}^{-1}(\mu)}$

Sideremark: Weighted transport distance

Definition

For $\nu_0, \nu_1 \ll \mu$ define the weighted transport distance by

$$\mathcal{T}^2_{\mu}(\nu_0,\nu_1) = \inf_{\{\Phi_s\}} \int \left| \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \; \frac{\mathsf{d}\nu_s}{\mathsf{d}\mu} \; \mathsf{d}s \right|^2 \mathsf{d}\mu.$$

 $(\Phi_s)_{s \in [0,1]}$ is absolutely continuous in s: $(\Phi_s)_{\sharp} \nu_0 = \nu_s$.

Mean-difference revisited: Identify $\int |
abla f|^2 d\mu = \|f\|_{\dot{H}^1(\mu)}^2$, then

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1 \right)^2 = \left(_{\dot{H}^{-1}(\mu)} \langle \nu_0 - \nu_1, f \rangle_{\dot{H}^1(\mu)} \right)^2 \\ \leq \mathcal{T}^2_{\mu}(\nu_0, \nu_1) \, \|f\|^2_{\dot{H}^1(\mu)} \, .$$

Indeed, it holds: $\mathcal{T}^2_{\mu}(\nu_0, \nu_1) = \|\nu_0 - \nu_1\|^2_{\dot{H}^{-1}(\mu)}$.

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$

(1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$ (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$ (3) optimize $\Sigma_{\tau^*} \Rightarrow \Sigma_{\tau^*}^{-1} = \nabla^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$

optimize γ ⇒ passage of saddle γ_{τ*} = s_{0,1}
 optimize γ_{τ*} ⇒ direction of eigenvector to λ⁻(∇²H(s_{0,1}))
 optimize Σ_{τ*} ⇒ Σ_τ⁻¹ = ∇²H(s_{0,1}) on stable manifold of s_{0,1}

Construction of transport interpolation

Step 3: Ansatz Φ_s such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$ (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$

(2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$ (3) optimize $\Sigma_{\tau^*} \Rightarrow \Sigma_{\tau^*}^{-1} = \nabla^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

Construction of transport interpolation

Step 3: Ansatz Φ_s such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$ (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$ (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$ (3) optimize $\Sigma_{\tau^*} \Rightarrow \Sigma_s \to \Sigma_s \to \nabla^2 H(s_{0,1})$ on stable manifold of some

Construction of transport interpolation

Step 3: Ansatz Φ_s such that $\nu_s = (\Phi_s)_{\sharp}\nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$ (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$ (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$ (3) optimize Σ_{τ^*}

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \llcorner B_{\sqrt{\varepsilon}}(\gamma_s)$

- (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$
- (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$
- (3) optimize $\Sigma_{ au^*} \Rightarrow \Sigma_{ au^*}^{-1} =
 abla^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$

- (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$
- (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$
- (3) optimize $\Sigma_{ au^*} \Rightarrow \Sigma_{ au^*}^{-1} =
 abla^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$
(1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$
(2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$
(3) optimize $\Sigma \Rightarrow \Sigma^{-1} = \Sigma^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

Discrete state space

reversible Markov chain

Markov chain $\{X(t)\}_{t\geq 0}$ on a finite state space $\mathcal S$ with generator

$$(Lf)(x) = \sum_{y \in S} p(x, y) \left(f(x) - f(y) \right)$$

and with detailed balance

$$\mu(x)p(x,y) = \mu(y)p(y,x)$$
 forall $x, y \in S$.

For any $A \subset S$: first hitting time of A

$$\tau_A = \inf\left\{t > 0 \mid X(t) \in A\right\}.$$

Discrete state space

reversible Markov chain

Markov chain $\{X(t)\}_{t\geq 0}$ on a finite state space $\mathcal S$ with generator

$$(Lf)(x) = \sum_{y \in S} p(x, y) \left(f(x) - f(y) \right)$$

and with detailed balance

$$\mu(x)p(x,y) = \mu(y)p(y,x)$$
 forall $x, y \in S$.

For any $A \subset S$: first hitting time of A

$$\tau_A = \inf \left\{ t > 0 \mid X(t) \in A \right\}.$$

Metastable points and valleys

Definition (Metastable points [Bovier])

Let $\mathcal{M} = \{a_1, \ldots, a_k\} \subset S$. The set \mathcal{M} is called a *set of metastable points*, if there exists a $\varrho > 0$ such that

$$\frac{\max_{\mathbf{a}\in\mathcal{M}}\mathbb{P}_{\mathbf{a}}\big[\tau_{\mathcal{M}\setminus\mathbf{a}}<\tau_{\mathbf{a}}\big]}{\min_{\mathbf{x}\in\mathcal{S}\setminus\mathcal{M}}\mathbb{P}_{\mathbf{x}}\big[\tau_{\mathcal{M}}<\tau_{\mathbf{x}}\big]} \leq \varrho \ll \frac{1}{|\mathcal{S}|} \qquad \varepsilon := \varrho|\mathcal{S}| \ll 1 \quad \text{as } |\mathcal{S}| \to \infty.$$

Definition (Metastable partition)

Metastable points $\mathcal{M} \subset S$ give rise to a *metastable partition* $\{\Omega_a\}_{a \in \mathcal{M}}$ if:

i)
$$\forall a \in \mathcal{M} : \Omega_a \subseteq \{x \in S \mid \mathbb{P}_x[\tau_a \leq \tau_x] \geq \mathbb{P}_x[\tau_{\mathcal{M} \setminus a} \leq \tau_x]\};$$

ii)
$$\biguplus_{a\in\mathcal{M}}\Omega_a=\mathcal{S};$$

iii) $\forall a \in \mathcal{M} \ \forall x \in \Omega_a : \mu[x] \le \mu[a].$

Metastable points and valleys

Definition (Metastable points [Bovier])

Let $\mathcal{M} = \{a_1, \ldots, a_k\} \subset \mathcal{S}$. The set \mathcal{M} is called a *set of metastable points*, if there exists a $\varrho > 0$ such that

$$\frac{\max_{a \in \mathcal{M}} \mathbb{P}_a \big[\tau_{\mathcal{M} \setminus a} < \tau_a \big]}{\min_{x \in \mathcal{S} \setminus \mathcal{M}} \mathbb{P}_x \big[\tau_{\mathcal{M}} < \tau_x \big]} \le \varrho \ll \frac{1}{|\mathcal{S}|} \qquad \varepsilon \coloneqq \varrho |\mathcal{S}| \ll 1 \quad \text{as } |\mathcal{S}| \to \infty.$$

Definition (Metastable partition)

Metastable points $\mathcal{M} \subset S$ give rise to a *metastable partition* $\{\Omega_a\}_{a \in \mathcal{M}}$ if:

i)
$$\forall a \in \mathcal{M} : \Omega_a \subseteq \{x \in \mathcal{S} \mid \mathbb{P}_x[\tau_a \leq \tau_x] \geq \mathbb{P}_x[\tau_{\mathcal{M} \setminus a} \leq \tau_x]\};$$

ii)
$$\biguplus_{a \in \mathcal{M}} \Omega_a = S;$$

iii) $\forall a \in \mathcal{M} \ \forall x \in \Omega_a : \mu[x] \le \mu[a].$

Metastable points and valleys

Definition (Metastable points [Bovier])

Let $\mathcal{M} = \{a_1, \ldots, a_k\} \subset S$. The set \mathcal{M} is called a *set of metastable points*, if there exists a $\rho > 0$ such that

$$\frac{\max_{a \in \mathcal{M}} \mathbb{P}_a \big[\tau_{\mathcal{M} \setminus a} < \tau_a \big]}{\min_{x \in \mathcal{S} \setminus \mathcal{M}} \mathbb{P}_x \big[\tau_{\mathcal{M}} < \tau_x \big]} \leq \varrho \ll \frac{1}{|\mathcal{S}|} \qquad \varepsilon \coloneqq \varrho |\mathcal{S}| \ll 1 \quad \text{as } |\mathcal{S}| \to \infty.$$

Definition (Metastable partition)

Metastable points $\mathcal{M} \subset \mathcal{S}$ give rise to a *metastable partition* $\{\Omega_a\}_{a \in \mathcal{M}}$ if:

i)
$$\forall a \in \mathcal{M} : \Omega_a \subseteq \{x \in \mathcal{S} \mid \mathbb{P}_x[\tau_a \leq \tau_x] \geq \mathbb{P}_x[\tau_{\mathcal{M} \setminus a} \leq \tau_x]\};$$

ii)
$$\biguplus_{a \in \mathcal{M}} \Omega_a = \mathcal{S};$$

iii)
$$\forall a \in \mathcal{M} \ \forall x \in \Omega_a : \mu[x] \le \mu[a].$$

Splitting

induced by metastable partition

Conditional measures for $a \in \mathcal{M}$

$$\mu_a(x) := \frac{\mathbb{1}_{\Omega_a}(x)}{\mu(\Omega_a)} \mu(x)$$

Marginal measure

$$\bar{\mu} := \sum_{a \in \mathcal{M}} Z_a \delta_a \quad \text{with} \quad Z_a := \mu(\Omega_a).$$

 $\begin{aligned} \operatorname{var}_{\mu}(f) &= Z_{a} \operatorname{var}_{\mu_{a}}(f) + Z_{b} \operatorname{var}_{\mu_{b}}(f) + Z_{a} Z_{b} (\mathbb{E}_{\mu_{a}}(f) - \mathbb{E}_{\mu_{b}}(f))^{2} \\ \operatorname{Ent}_{\mu}(f^{2}) &\leq Z_{a} \operatorname{Ent}_{\mu_{0}}(f^{2}) + Z_{1} \operatorname{Ent}_{\mu_{b}}(f^{2}) \\ &+ \frac{Z_{a} Z_{b}}{\Lambda(Z_{a}, Z_{b})} \left(\operatorname{var}_{\mu_{a}}(f) + \operatorname{var}_{\mu_{b}}(f) + \left(\mathbb{E}_{\mu_{a}}(f) - \mathbb{E}_{\mu_{b}}(f) \right)^{2} \right), \end{aligned}$

where $\Lambda(Z_a,Z_b)=rac{Z_a-Z_b}{\log Z_a-\log Z_b}$ is the logarithmic mean.

Splitting

induced by metastable partition

Conditional measures for $a \in \mathcal{M}$

$$\mu_a(x) := \frac{\mathbb{1}_{\Omega_a}(x)}{\mu(\Omega_a)} \mu(x)$$

Marginal measure

$$ar{\mu} := \sum_{a \in \mathcal{M}} Z_a \delta_a$$
 with $Z_a := \mu(\Omega_a).$

$$\begin{aligned} \operatorname{var}_{\mu}(f) &= Z_{a} \operatorname{var}_{\mu_{a}}(f) + Z_{b} \operatorname{var}_{\mu_{b}}(f) + Z_{a} Z_{b} (\mathbb{E}_{\mu_{a}}(f) - \mathbb{E}_{\mu_{b}}(f))^{2} \\ \operatorname{Ent}_{\mu}(f^{2}) &\leq Z_{a} \operatorname{Ent}_{\mu_{0}}(f^{2}) + Z_{1} \operatorname{Ent}_{\mu_{b}}(f^{2}) \\ &+ \frac{Z_{a} Z_{b}}{\Lambda(Z_{a}, Z_{b})} \left(\operatorname{var}_{\mu_{a}}(f) + \operatorname{var}_{\mu_{b}}(f) + \left(\mathbb{E}_{\mu_{a}}(f) - \mathbb{E}_{\mu_{b}}(f) \right)^{2} \right), \end{aligned}$$

where $\Lambda(Z_a, Z_b) = \frac{Z_a - Z_b}{\log Z_a - \log Z_b}$ is the logarithmic mean.

Capacities

Definition (Harmonic functions and capacities)

Let $A, B \subset S$ be disjoint, then the harmonic function between A to B is defined by

$$\begin{cases} (Lh_{A,B}) = 0 & , x \in \mathcal{S} \setminus (A \cup B) \\ h_{A,B}(x) = \mathbb{1}_A(x) & , x \in A \cup B. \end{cases}$$

The capacity of a capacitor (A, B) is defined as

$$\operatorname{cap}(A,B) = (h_{A,B}, -Lh_{A,B})_{\!\mu}.$$

Probabilistic interpretation

$$\begin{array}{ll} \mathsf{A}, \mathsf{B} \subset \mathcal{S} & h_{\mathsf{A}, \mathsf{B}}(x) = \mathbb{P}_x(\tau_{\mathsf{A}} < \tau_{\mathsf{B}}), & x \in \mathcal{S} \setminus (\mathsf{A} \cup \mathsf{B}) \\ \mathsf{a}, \mathsf{b} \in \mathcal{S} & \mathsf{cap}(\mathsf{a}, \mathsf{b}) = \mu(\mathsf{a}) \, \mathbb{P}_{\mathsf{a}}(\tau_{\mathsf{b}} < \tau_{\mathsf{a}}) = \mu(\mathsf{b}) \, \mathbb{P}_{\mathsf{b}}(\tau_{\mathsf{a}} < \tau_{\mathsf{b}}). \end{array}$$

Capacities

Definition (Harmonic functions and capacities)

Let $A, B \subset S$ be disjoint, then the harmonic function between A to B is defined by

$$\begin{cases} (Lh_{A,B}) = 0 & , x \in \mathcal{S} \setminus (A \cup B) \\ h_{A,B}(x) = \mathbb{1}_A(x) & , x \in A \cup B. \end{cases}$$

The capacity of a capacitor (A, B) is defined as

$$\operatorname{cap}(A,B) = (h_{A,B}, -Lh_{A,B})_{\mu}.$$

Probabilistic interpretation

$$\begin{array}{ll} \mathsf{A},\mathsf{B}\subset\mathcal{S} & h_{\mathsf{A},\mathsf{B}}(x)=\mathbb{P}_x(\tau_{\mathsf{A}}<\tau_{\mathsf{B}}), & x\in\mathcal{S}\setminus(\mathsf{A}\cup\mathsf{B})\\ \mathsf{a},\mathsf{b}\in\mathcal{S} & \mathsf{cap}(\mathsf{a},\mathsf{b})=\mu(\mathsf{a})\,\mathbb{P}_{\mathsf{a}}(\tau_{\mathsf{b}}<\tau_{\mathsf{a}})=\mu(\mathsf{b})\,\mathbb{P}_{\mathsf{b}}(\tau_{\mathsf{a}}<\tau_{\mathsf{b}}). \end{array}$$

PI and LSI for Markov chains

Theorem ([S., Slowik '13])

For a metastable Markov chain with $\mathcal{M} = \{a, b\}$ holds

$$\frac{1}{\lambda} = \frac{1}{2} \frac{Z_a Z_b}{\operatorname{cap}(a, b)} \left(1 + o(\varrho|\mathcal{S}|)\right).$$

Moreover, under assuming a good local LSI, i.e. $\alpha_{loc}^{-1} = o(\varrho|S|)$, holds

$$\frac{1}{\alpha} = \frac{Z_a Z_b}{\Lambda(Z_a, Z_b)} \frac{1}{\operatorname{cap}(a, b)} \left(1 + o(\varrho|\mathcal{S}|)\right) = \frac{1}{\Lambda(Z_a, Z_b)} \frac{1}{\varrho} \left(1 + o(\varrho|\mathcal{S}|)\right)$$

Ingredients:

Iocal PI: Donsker-Varadhan variational characterization
 ⇒ precursor of Lyapunov technique of continuous case
 Needs refinement for local LSI!

mean-difference estimate via H⁻¹-norms in discrete setting

PI and LSI for Markov chains

Theorem ([S., Slowik '13])

For a metastable Markov chain with $\mathcal{M} = \{a, b\}$ holds

$$\frac{1}{\lambda} = \frac{1}{2} \frac{Z_a Z_b}{\operatorname{cap}(a, b)} \left(1 + o(\varrho|\mathcal{S}|) \right).$$

Moreover, under assuming a good local LSI, i.e. $\alpha_{loc}^{-1} = o(\varrho|S|)$, holds

$$\frac{1}{\alpha} = \frac{Z_a Z_b}{\Lambda(Z_a, Z_b)} \frac{1}{\operatorname{cap}(a, b)} \left(1 + o(\varrho|\mathcal{S}|)\right) = \frac{1}{\Lambda(Z_a, Z_b)} \frac{1}{\varrho} \left(1 + o(\varrho|\mathcal{S}|)\right)$$

Ingredients:

local PI: Donsker-Varadhan variational characterization
 ⇒ precursor of Lyapunov technique of continuous case
 Needs refinement for local LSI!

mean-difference estimate via H⁻¹-norms in discrete setting

PI and LSI for Markov chains

Theorem ([S., Slowik '13])

For a metastable Markov chain with $\mathcal{M} = \{a, b\}$ holds

$$\frac{1}{\lambda} = \frac{1}{2} \frac{Z_a Z_b}{\operatorname{cap}(a, b)} \left(1 + o(\varrho|\mathcal{S}|) \right).$$

Moreover, under assuming a good local LSI, i.e. $\alpha_{loc}^{-1} = o(\varrho|S|)$, holds

$$\frac{1}{\alpha} = \frac{Z_a Z_b}{\Lambda(Z_a, Z_b)} \frac{1}{\operatorname{cap}(a, b)} \left(1 + o(\varrho|\mathcal{S}|)\right) = \frac{1}{\Lambda(Z_a, Z_b)} \frac{1}{\varrho} \left(1 + o(\varrho|\mathcal{S}|)\right)$$

Ingredients:

- local PI: Donsker-Varadhan variational characterization
 ⇒ precursor of Lyapunov technique of continuous case
 Needs refinement for local LSI!
- mean-difference estimate via H^{-1} -norms in discrete setting

Mean-Difference

Negative Sobolev norms in discrete setting

Identify Dirichlet form with H^1 -norm

$$\|f\|_{H^1(\mu)}^2 := (f, -Lf)_{\mu} = \frac{1}{2} \sum_{x,y \in S} \mu(x) p(x, y) (f(x) - f(y))^2.$$

Negative Sobolev norm as dual norm

$$\|f\|_{H^{-1}(\mu)}^2 := \sup_{g \in H^1(\mu)} \left(2(f,g)_{\mu} - \|g\|_{H^1(\mu)}^2 \right).$$

Mean-difference becomes for two probability measure ν_A, ν_B

$$\left|\mathbb{E}_{\nu_{A}}(f) - \mathbb{E}_{\nu_{B}}(f)\right| = \left|\left(f, \frac{\nu_{A}}{\mu} - \frac{\nu_{B}}{\mu}\right)_{\mu}\right| \leq \left\|f\right\|_{H^{1}(\mu)} \left\|\frac{\nu_{A}}{\mu} - \frac{\nu_{B}}{\mu}\right\|_{H^{-1}(\mu)}$$

Mean-Difference

Negative Sobolev norms in discrete setting

Identify Dirichlet form with H^1 -norm

$$\|f\|_{H^1(\mu)}^2 := (f, -Lf)_{\mu} = \frac{1}{2} \sum_{x,y \in S} \mu(x) p(x,y) (f(x) - f(y))^2.$$

Negative Sobolev norm as dual norm

$$\|f\|_{H^{-1}(\mu)}^2 := \sup_{g \in H^1(\mu)} \left(2(f,g)_{\mu} - \|g\|_{H^1(\mu)}^2 \right).$$

Mean-difference becomes for two probability measure ν_A, ν_B

$$\left|\mathbb{E}_{\nu_{A}}(f) - \mathbb{E}_{\nu_{B}}(f)\right| = \left|\left(f, \frac{\nu_{A}}{\mu} - \frac{\nu_{B}}{\mu}\right)_{\mu}\right| \leq \left\|f\right\|_{H^{1}(\mu)} \left\|\frac{\nu_{A}}{\mu} - \frac{\nu_{B}}{\mu}\right\|_{H^{-1}(\mu)}$$

Mean-Difference

Negative Sobolev norms in discrete setting

Identify Dirichlet form with H^1 -norm

$$\|f\|_{H^1(\mu)}^2 := (f, -Lf)_{\mu} = \frac{1}{2} \sum_{x,y \in S} \mu(x) p(x,y) (f(x) - f(y))^2.$$

Negative Sobolev norm as dual norm

$$\|f\|_{H^{-1}(\mu)}^2 := \sup_{g \in H^1(\mu)} \left(2(f,g)_{\mu} - \|g\|_{H^1(\mu)}^2 \right).$$

Mean-difference becomes for two probability measure ν_A, ν_B

$$\left|\mathbb{E}_{\nu_{\mathcal{A}}}(f) - \mathbb{E}_{\nu_{\mathcal{B}}}(f)\right| = \left|\left(f, \frac{\nu_{\mathcal{A}}}{\mu} - \frac{\nu_{\mathcal{B}}}{\mu}\right)_{\mu}\right| \leq \|f\|_{H^{1}(\mu)} \left\|\frac{\nu_{\mathcal{A}}}{\mu} - \frac{\nu_{\mathcal{B}}}{\mu}\right\|_{H^{-1}(\mu)}$$

Definition (Flow)

$$\begin{array}{ll} \text{flow:} & \text{an antisymmetric map } \varphi : \mathcal{S} \times \mathcal{S} \to \mathbb{R} \text{ with} \\ & \sum_{y \in \mathcal{S}} \varphi(x, y) = 0 \text{ for all } x \in \mathcal{S} \\ \text{divergence:} & \text{div } \varphi(x) := \sum_{y} \left(\varphi(x, y) - \varphi(y, x) \right) \\ & \text{form:} & \mathcal{E}(\varphi) := \frac{1}{2} \sum_{x, y \in \mathcal{S}} \frac{1}{\mu(x) \rho(x, y)} |\varphi(x, y)|^2. \end{array}$$

Analog of weighted transport distance

Lemma (Representation of H^{-1} -norm)

For two probability measure ν_a and ν_b holds

$$\left\|\frac{\nu_a}{\mu} - \frac{\nu_b}{\mu}\right\|_{H^{-1}(\mu)}^2 = \min\left\{\mathcal{E}(\varphi) : \operatorname{div}\varphi(x) = \nu_a(x) - \nu_b(x), \forall x \in \mathcal{S}\right\}.$$

Goal: Construct flow providing a good upper bound for mean-difference.

André Schlichting (IAM Bonn)

Definition (Flow)

$$\begin{array}{ll} \text{flow:} & \text{an antisymmetric map } \varphi : \mathcal{S} \times \mathcal{S} \to \mathbb{R} \text{ with} \\ & \sum_{y \in \mathcal{S}} \varphi(x, y) = 0 \text{ for all } x \in \mathcal{S} \\ \text{divergence:} & \text{div } \varphi(x) := \sum_{y} \left(\varphi(x, y) - \varphi(y, x) \right) \\ & \text{form:} & \mathcal{E}(\varphi) := \frac{1}{2} \sum_{x, y \in \mathcal{S}} \frac{1}{\mu(x) \rho(x, y)} |\varphi(x, y)|^2. \end{array}$$

Analog of weighted transport distance

Lemma (Representation of *H*⁻¹-norm)

For two probability measure ν_a and ν_b holds

$$\left\|\frac{\nu_a}{\mu}-\frac{\nu_b}{\mu}\right\|_{H^{-1}(\mu)}^2=\min\left\{\mathcal{E}(\varphi):\operatorname{div}\varphi(x)=\nu_a(x)-\nu_b(x),\forall x\in\mathcal{S}\right\}.$$

Goal: Construct flow providing a good upper bound for mean-difference.

Definition (Flow)

flow: an antisymmetric map
$$\varphi : S \times S \to \mathbb{R}$$
 with
 $\sum_{y \in S} \varphi(x, y) = 0$ for all $x \in S$
divergence: div $\varphi(x) := \sum_{y} (\varphi(x, y) - \varphi(y, x))$
form: $\mathcal{E}(\varphi) := \frac{1}{2} \sum_{x,y \in S} \frac{1}{\mu(x) p(x, y)} |\varphi(x, y)|^2$.

Analog of weighted transport distance

Lemma (Representation of H^{-1} -norm)

For two probability measure ν_a and ν_b holds

$$\left\|\frac{\nu_a}{\mu}-\frac{\nu_b}{\mu}\right\|_{H^{-1}(\mu)}^2=\min\left\{\mathcal{E}(\varphi):\operatorname{div}\varphi(x)=\nu_a(x)-\nu_b(x),\forall x\in\mathcal{S}\right\}.$$

Goal: Construct flow providing a good upper bound for mean-difference.

Definition (Flow)

$$\begin{array}{ll} \text{flow:} & \text{an antisymmetric map } \varphi : \mathcal{S} \times \mathcal{S} \to \mathbb{R} \text{ with} \\ & \sum_{y \in \mathcal{S}} \varphi(x, y) = 0 \text{ for all } x \in \mathcal{S} \\ \text{divergence:} & \text{div } \varphi(x) \mathrel{\mathop:}= \sum_{y} \left(\varphi(x, y) - \varphi(y, x) \right) \\ & \text{form:} & \mathcal{E}(\varphi) \mathrel{\mathop:}= \frac{1}{2} \sum_{x, y \in \mathcal{S}} \frac{1}{\mu(x) p(x, y)} |\varphi(x, y)|^2. \end{array}$$

Analog of weighted transport distance

Lemma (Representation of H^{-1} -norm)

For two probability measure ν_a and ν_b holds

$$\left\|\frac{\nu_{a}}{\mu}-\frac{\nu_{b}}{\mu}\right\|_{H^{-1}(\mu)}^{2}=\min\left\{\mathcal{E}(\varphi):\operatorname{div}\varphi(x)=\nu_{a}(x)-\nu_{b}(x),\forall x\in\mathcal{S}\right\}.$$

Goal: Construct flow providing a good upper bound for mean-difference.

Canonical flow

Harmonic flows between points $z, z' \in S$:

$$\varphi_{z,z'}(x,y) := \frac{\mu(x)\,p(x,y)}{\operatorname{cap}(z,z')} \left(h_{z,z'}(x) - h_{z,z'}(y)\right) \quad \begin{cases} Lh_{z,z'} = 0, \text{ on } S \setminus \{z,z'\} \\ h_{z,z'}(z) = 1, h_{z,z'}(z') = 0. \end{cases}$$

Then

$$\mathcal{E}(\varphi_{z,z'}) = \frac{1}{2} \sum_{x,y} \frac{\mu(x) \, p(x,y)}{\operatorname{cap}(z,z')^2} \left(h_{z,z'}(x) - h_{z,z'}(y) \right)^2 = \frac{1}{\operatorname{cap}(z,z')}.$$

Lemma

For two probability measures ν_A, ν_B let the canonical flow be defined by

$$\varphi_{\nu_{A},\nu_{B}}(x,y) := \sum_{z \in A, z' \in B} \nu_{A}(z) \nu_{B}(z') \frac{\mu(x)\rho(x,y)}{\operatorname{cap}(z,z')} \left(h_{z,z'}(x) - h_{z,z'}(y) \right).$$

Then φ_{ν_A,ν_B} is a flow and it holds

$$\mathcal{E}(\varphi_{\nu_A,\nu_B}) \leq \sum_{x \in A, y \in B} \frac{\nu_A(x)\nu_B(y)}{\operatorname{cap}(x,y)}.$$

André Schlichting (IAM Bonn)

Canonical flow

Harmonic flows between points $z, z' \in S$:

$$\varphi_{z,z'}(x,y) := \frac{\mu(x)\,p(x,y)}{\operatorname{cap}(z,z')} \left(h_{z,z'}(x) - h_{z,z'}(y)\right) \quad \begin{cases} Lh_{z,z'} = 0, \text{ on } S \setminus \{z,z'\} \\ h_{z,z'}(z) = 1, h_{z,z'}(z') = 0. \end{cases}$$

Then

$$\mathcal{E}(\varphi_{z,z'}) = \frac{1}{2} \sum_{x,y} \frac{\mu(x) \, p(x,y)}{\operatorname{cap}(z,z')^2} \left(h_{z,z'}(x) - h_{z,z'}(y) \right)^2 = \frac{1}{\operatorname{cap}(z,z')}.$$

Lemma

For two probability measures ν_A, ν_B let the canonical flow be defined by

$$\varphi_{\nu_A,\nu_B}(x,y) := \sum_{z \in A, z' \in B} \nu_A(z) \nu_B(z') \frac{\mu(x)\rho(x,y)}{\operatorname{cap}(z,z')} \left(h_{z,z'}(x) - h_{z,z'}(y) \right).$$

Then φ_{ν_A,ν_B} is a flow and it holds

$$\mathcal{E}(\varphi_{\nu_A,\nu_B}) \leq \sum_{x \in A, y \in B} \frac{\nu_A(x)\nu_B(y)}{\operatorname{cap}(x,y)}.$$

Canonical flow

Harmonic flows between points $z, z' \in S$:

$$\varphi_{z,z'}(x,y) := \frac{\mu(x)\,p(x,y)}{\operatorname{cap}(z,z')} \left(h_{z,z'}(x) - h_{z,z'}(y)\right) \quad \begin{cases} Lh_{z,z'} = 0, \text{ on } S \setminus \{z,z'\} \\ h_{z,z'}(z) = 1, h_{z,z'}(z') = 0. \end{cases}$$

Then

$$\mathcal{E}(\varphi_{z,z'}) = \frac{1}{2} \sum_{x,y} \frac{\mu(x) \, p(x,y)}{\operatorname{cap}(z,z')^2} \left(h_{z,z'}(x) - h_{z,z'}(y) \right)^2 = \frac{1}{\operatorname{cap}(z,z')}.$$

Lemma

For two probability measures $\nu_{\text{A}}, \nu_{\text{B}}$ let the canonical flow be defined by

$$\varphi_{\nu_A,\nu_B}(x,y) := \sum_{z \in A, z' \in B} \nu_A(z) \nu_B(z') \frac{\mu(x)p(x,y)}{\operatorname{cap}(z,z')} \left(h_{z,z'}(x) - h_{z,z'}(y) \right).$$

Then φ_{ν_A,ν_B} is a flow and it holds

$$\mathcal{E}(arphi_{
u_A,
u_B}) \leq \sum_{x \in A, y \in B} rac{
u_A(x)
u_B(y)}{\mathsf{cap}(x,y)}.$$

Tradeoff between approximation and comparison of capacities Introduce coupling measures ν_a^{δ} and ν_b^{δ} between μ_a , μ_b :

$$\left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f] \right)^{2} \leq (1 + \tau) \left(\mathbb{E}_{\nu_{a}^{\delta}}[f] - \mathbb{E}_{\nu_{b}^{\delta}}[f] \right)^{2} + 2 \left(1 + \frac{1}{\tau} \right) \sum_{c \in \{a, b\}} \left(\mathbb{E}_{\mu_{c}}[f] - \mathbb{E}_{\nu_{c}^{\delta}}[f] \right)^{2}$$

Tradeoff between approximation and comparison of capacities Interpolation between of H^{-1} and H^{1} norm + recognize covariance:

$$\begin{split} \left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f]\right)^{2} \\ &\leq (1+\tau) \left(\mathbb{E}_{\nu_{a}^{\delta}}[f] - \mathbb{E}_{\nu_{b}^{\delta}}[f]\right)^{2} + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \left(\mathbb{E}_{\mu_{c}}[f] - \mathbb{E}_{\nu_{c}^{\delta}}[f]\right)^{2} \\ &\leq (1+\tau) \left\|\frac{\nu_{a}^{\delta}}{\mu} - \frac{\nu_{b}^{\delta}}{\mu}\right\|_{H^{-1}(\mu)}^{2} \mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \operatorname{cov}_{\mu_{c}}^{2}\left(f, \frac{\nu_{c}^{\delta}}{\mu_{c}}\right) \\ &\leq (1+\tau) \,\mathcal{E}(\varphi_{\nu_{a}^{\delta},\nu_{b}^{\delta}}) \,\mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \operatorname{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right) \,\operatorname{var}_{\mu_{c}}(f) \\ &\leq (1+\tau) \sum_{x,y} \frac{\nu_{a}^{\delta}(x)\nu_{b}^{\delta}(y)}{\operatorname{cap}(x,y)} \,\mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \frac{\operatorname{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right)}{\lambda_{\mathrm{loc}}} \,\mathcal{D}(f) \end{split}$$

Tradeoff between approximation and comparison of capacities Use canonical flow for H^{-1} -norm + Cauchy-Schwarz on covariance:

$$\begin{split} \left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f]\right)^{2} \\ &\leq (1+\tau) \left(\mathbb{E}_{\nu_{a}^{\delta}}[f] - \mathbb{E}_{\nu_{b}^{\delta}}[f]\right)^{2} + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \left(\mathbb{E}_{\mu_{c}}[f] - \mathbb{E}_{\nu_{c}^{\delta}}[f]\right)^{2} \\ &\leq (1+\tau) \left\|\frac{\nu_{a}^{\delta}}{\mu} - \frac{\nu_{b}^{\delta}}{\mu}\right\|_{H^{-1}(\mu)}^{2} \mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \cos^{2}_{\mu_{c}}\left(f, \frac{\nu_{c}^{\delta}}{\mu_{c}}\right) \\ &\leq (1+\tau) \mathcal{E}(\varphi_{\nu_{a}^{\delta},\nu_{b}^{\delta}}) \mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \operatorname{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right) \operatorname{var}_{\mu_{c}}(f) \\ &\leq (1+\tau) \sum_{x,y} \frac{\nu_{a}^{\delta}(x)\nu_{b}^{\delta}(y)}{\operatorname{cap}(x,y)} \mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \frac{\operatorname{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right)}{\lambda_{\mathrm{loc}}} \mathcal{D}(f) \end{split}$$

Tradeoff between approximation and comparison of capacities Estimate canonical flow + Local Poincaré inequality:

$$\begin{split} \left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f]\right)^{2} \\ &\leq (1+\tau) \left(\mathbb{E}_{\nu_{a}^{\delta}}[f] - \mathbb{E}_{\nu_{b}^{\delta}}[f]\right)^{2} + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \left(\mathbb{E}_{\mu_{c}}[f] - \mathbb{E}_{\nu_{c}^{\delta}}[f]\right)^{2} \\ &\leq (1+\tau) \left\|\frac{\nu_{a}^{\delta}}{\mu} - \frac{\nu_{b}^{\delta}}{\mu}\right\|_{H^{-1}(\mu)}^{2} \mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \operatorname{cov}_{\mu_{c}}^{2}\left(f, \frac{\nu_{c}^{\delta}}{\mu_{c}}\right) \\ &\leq (1+\tau) \,\mathcal{E}(\varphi_{\nu_{a}^{\delta},\nu_{b}^{\delta}}) \,\mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \operatorname{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right) \,\operatorname{var}_{\mu_{c}}(f) \\ &\leq (1+\tau) \sum_{x,y} \frac{\nu_{a}^{\delta}(x)\nu_{b}^{\delta}(y)}{\operatorname{cap}(x,y)} \,\mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \frac{\operatorname{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right)}{\lambda_{\mathrm{loc}}} \,\mathcal{D}(f) \end{split}$$

Tradeoff between approximation and comparison of capacities

$$\begin{split} & \left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f]\right)^{2} \\ & \leq (1+\tau) \sum_{x,y} \frac{\nu_{a}^{\delta}(x)\nu_{b}^{\delta}(y)}{\mathsf{cap}(x,y)} \ \mathcal{D}(f) + 2\left(1 + \frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \frac{\mathsf{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right)}{\lambda_{\mathsf{loc}}} \ \mathcal{D}(f) \end{split}$$

Choice of ν_c^{δ} , $c \in \{a, b\}$, has to provide: a) Comparison of capacities: $\operatorname{cap}(x, y) \approx \operatorname{cap}(a, b)$ for $x \in \operatorname{supp} \nu_a^{\delta}$ and $y \in \operatorname{supp} \nu_b^{\delta}$. b) Approximation in variance: $\operatorname{var}_{\mu_c} (\nu_c^{\delta}/\mu_c) \leq o(\varrho S)$ For $\delta > 0$ and $c \in \{a, b\}$ define: $\Omega_c^{\delta} := \{x \in S : \operatorname{cap}(a, b) \leq \delta \operatorname{cap}(c, x)\}$ and $\nu_c^{\delta}[x] := \frac{\mathbb{1}_{\Omega_c^{\delta}}(x)}{\mu(\Omega_c^{\delta})} \mu[x]$. • Provides a) and b) for appropriate choice of δ .

• Optimization of $\tau \Rightarrow \tau = o(\varrho|\mathcal{S}|)$ proves mean-difference Theorem.

André Schlichting (IAM Bonn)

Tradeoff between approximation and comparison of capacities

$$\begin{split} & \left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f]\right)^{2} \\ & \leq (1+\tau) \sum_{x,y} \frac{\nu_{a}^{\delta}(x)\nu_{b}^{\delta}(y)}{\mathsf{cap}(x,y)} \ \mathcal{D}(f) + 2\left(1 + \frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \frac{\mathsf{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right)}{\lambda_{\mathsf{loc}}} \ \mathcal{D}(f) \end{split}$$

Choice of ν_c^{δ} , $c \in \{a, b\}$, has to provide: a) Comparison of capacities: $\operatorname{cap}(x, y) \approx \operatorname{cap}(a, b)$ for $x \in \operatorname{supp} \nu_a^{\delta}$ and $y \in \operatorname{supp} \nu_b^{\delta}$.

b) Approximation in variance: $\operatorname{var}_{\mu_c}(\nu_c^{\delta}/\mu_c) \lesssim o(\varrho S)$ For $\delta > 0$ and $c \in \{a, b\}$ define:

$$\Omega_c^{\delta} := \{x \in \mathcal{S} : \operatorname{cap}(a, b) \leq \delta \operatorname{cap}(c, x)\} \quad \text{and} \quad \nu_c^{\delta}[x] := \frac{\mathbbm{1}_{\Omega_c^{\delta}}(x)}{\mu(\Omega_c^{\delta})} \ \mu[x].$$

• Provides a) and b) for appropriate choice of δ .

• Optimization of $\tau \Rightarrow \tau = o(\varrho|S|)$ proves mean-difference Theorem.

André Schlichting (IAM Bonn)

Tradeoff between approximation and comparison of capacities

$$\begin{split} & \left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f]\right)^{2} \\ & \leq (1+\tau) \sum_{x,y} \frac{\nu_{a}^{\delta}(x)\nu_{b}^{\delta}(y)}{\mathsf{cap}(x,y)} \ \mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \frac{\mathsf{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right)}{\lambda_{\mathsf{loc}}} \ \mathcal{D}(f) \end{split}$$

Choice of ν_c^{δ} , $c \in \{a, b\}$, has to provide: a) Comparison of capacities: $\operatorname{cap}(x, y) \approx \operatorname{cap}(a, b)$ for $x \in \operatorname{supp} \nu_a^{\delta}$ and $y \in \operatorname{supp} \nu_b^{\delta}$. b) Approximation in variance: $\operatorname{var}_{\mu_c} (\nu_c^{\delta}/\mu_c) \lesssim o(\varrho S)$ For $\delta > 0$ and $c \in \{a, b\}$ define: $\Omega_c^{\delta} := \{x \in S : \operatorname{cap}(a, b) \le \delta \operatorname{cap}(c, x)\}$ and $\nu_c^{\delta}[x] := \frac{\mathbb{1}_{\Omega_c^{\delta}}(x)}{\mu(\Omega_c^{\delta})} \mu[x]$.

• Provides a) and b) for appropriate choice of δ .

• Optimization of $\tau \Rightarrow \tau = o(\rho|S|)$ proves mean-difference Theorem.

Tradeoff between approximation and comparison of capacities

$$\begin{split} & \left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f]\right)^{2} \\ & \leq (1+\tau) \sum_{x,y} \frac{\nu_{a}^{\delta}(x)\nu_{b}^{\delta}(y)}{\mathsf{cap}(x,y)} \ \mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \frac{\mathsf{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right)}{\lambda_{\mathsf{loc}}} \ \mathcal{D}(f) \end{split}$$

Choice of ν_c^{δ} , $c \in \{a, b\}$, has to provide: a) Comparison of capacities: $\operatorname{cap}(x, y) \approx \operatorname{cap}(a, b)$ for $x \in \operatorname{supp} \nu_a^{\delta}$ and $y \in \operatorname{supp} \nu_b^{\delta}$. b) Approximation in variance: $\operatorname{var}_{\mu_c} (\nu_c^{\delta}/\mu_c) \leq o(\varrho S)$ For $\delta > 0$ and $c \in \{a, b\}$ define: $\Omega_c^{\delta} := \{x \in S : \operatorname{cap}(a, b) \leq \delta \operatorname{cap}(c, x)\}$ and $\nu_c^{\delta}[x] := \frac{\mathbb{1}_{\Omega_c^{\delta}}(x)}{\mu(\Omega^{\delta})} \mu[x]$.

• Provides a) and b) for appropriate choice of δ .

• Optimization of $\tau \Rightarrow \tau = o(\varrho|S|)$ proves mean-difference Theorem.

Tradeoff between approximation and comparison of capacities

$$\begin{split} & \left(\mathbb{E}_{\mu_{a}}[f] - \mathbb{E}_{\mu_{b}}[f]\right)^{2} \\ & \leq (1+\tau) \sum_{x,y} \frac{\nu_{a}^{\delta}(x)\nu_{b}^{\delta}(y)}{\mathsf{cap}(x,y)} \ \mathcal{D}(f) + 2\left(1+\frac{1}{\tau}\right) \sum_{c \in \{a,b\}} \frac{\mathsf{var}_{\mu_{c}}\left(\frac{\nu_{c}^{\delta}}{\mu_{c}}\right)}{\lambda_{\mathsf{loc}}} \ \mathcal{D}(f) \end{split}$$

Choice of ν_c^{δ} , $c \in \{a, b\}$, has to provide: a) Comparison of capacities: $\operatorname{cap}(x, y) \approx \operatorname{cap}(a, b)$ for $x \in \operatorname{supp} \nu_a^{\delta}$ and $y \in \operatorname{supp} \nu_b^{\delta}$. b) Approximation in variance: $\operatorname{var}_{\mu_c} (\nu_c^{\delta}/\mu_c) \leq o(\varrho S)$ For $\delta > 0$ and $c \in \{a, b\}$ define: $\Omega_c^{\delta} := \{x \in S : \operatorname{cap}(a, b) \leq \delta \operatorname{cap}(c, x)\}$ and $\nu_c^{\delta}[x] := \frac{\mathbb{1}_{\Omega_c^{\delta}}(x)}{\mu(\Omega_c^{\delta})} \mu[x]$.

• Provides a) and b) for appropriate choice of δ .

• Optimization of $\tau \Rightarrow \tau = o(\varrho|S|)$ proves mean-difference Theorem.

- Examples of entropic gradient flows showing metastability:
 - Fokker-Planck equation at low temperature
 - Metastable reversible Markov chains for growing system
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - good local mixing
 - \Rightarrow Donsker-Varadhan/Lyapunov technique
 - sharp estimates of mean-difference
 transport/flow representation of ACS-norm and optimization

- Examples of entropic gradient flows showing metastability:
 - Fokker-Planck equation at low temperature
 - Metastable reversible Markov chains for growing system
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - good local mixing
 - \Rightarrow Donsker-Varadhan/Lyapunov technique
 - sharp estimates of mean-difference
 transport/flow representation of ACS-norm and optimization

- Examples of entropic gradient flows showing metastability:
 - Fokker-Planck equation at low temperature
 - Metastable reversible Markov chains for growing system
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - good local mixing
 Donsker-Varadhan/Lyapunov technique
 - sharp estimates of mean-difference
 ⇒ transport/flow representation of H⁻¹-norm and optimization

- Examples of entropic gradient flows showing metastability:
 - Fokker-Planck equation at low temperature
 - Metastable reversible Markov chains for growing system
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - good local mixing
 - \Rightarrow Donsker-Varadhan/Lyapunov technique
 - sharp estimates of mean-difference
 ⇒ transport/flow representation of H⁻¹-norm and optimization

- Examples of entropic gradient flows showing metastability:
 - Fokker-Planck equation at low temperature
 - Metastable reversible Markov chains for growing system
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - *good* local mixing
 ⇒ Donsker-Varadhan/Lyapunov techniq.
 - sharp estimates of mean-difference
 ⇒ transport/flow representation of H⁻¹-norm and optimization

- Examples of entropic gradient flows showing metastability:
 - Fokker-Planck equation at low temperature
 - Metastable reversible Markov chains for growing system
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - *good* local mixing
 ⇒ Donsker-Varadhan/Lyapunov technique
 - sharp estimates of mean-difference
 ⇒ transport/flow representation of H⁻¹-norm and optimization

- Examples of entropic gradient flows showing metastability:
 - Fokker-Planck equation at low temperature
 - Metastable reversible Markov chains for growing system
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - *good* local mixing
 ⇒ Donsker-Varadhan/Lyapunov technique
 - ► sharp estimates of mean-difference ⇒ transport/flow representation of H^{-1} -norm and optimization