Optimal Poincaré and logarithmic Sobolev constants by decomposition of the energy landscape

André Schlichting

joint work with Georg Menz (Stanford)

Perspectives in Analysis and Probability — Opening Conference

April 12, 2013

1 Description and Question

2 Main results

3 Sketch of the Proofs

- Local PI and LSI
- Mean-difference estimate

Introduction

Overdamped Langevin dynamics

Hamiltonian $H : \mathbb{R}^n \to \mathbb{R}$ energy landscape

Dynamic at temperature $\varepsilon \ll 1$ d $X_t = -\nabla H(X_t) dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

$$\begin{array}{ll} \text{Gibbs measure } \mu(\mathsf{d} x) = \frac{1}{Z_{\mu}}\exp\left(-\frac{H}{\varepsilon}\right)\mathsf{d} x,\\ \text{where } \quad Z_{\mu} = \int \exp\left(-\frac{H}{\varepsilon}\right)\,\mathsf{d} x \end{array}$$

Generator evolution of $f_t = \rho_t / \mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t$

Introduction

Overdamped Langevin dynamics

Hamiltonian $H : \mathbb{R}^n \to \mathbb{R}$ energy landscape

Dynamic at temperature $\varepsilon \ll 1$ d $X_t = -\nabla H(X_t) dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp\left(-\frac{H}{\varepsilon}\right) dx$$
,
where $Z_{\mu} = \int \exp\left(-\frac{H}{\varepsilon}\right) dx$

Generator evolution of $f_t = \varrho_t / \mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t$

Introduction

Overdamped Langevin dynamics

Hamiltonian $H : \mathbb{R}^n \to \mathbb{R}$ energy landscape

Dynamic at temperature $\varepsilon \ll 1$ d $X_t = -\nabla H(X_t) dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp\left(-\frac{H}{\varepsilon}\right) dx$$
,
where $Z_{\mu} = \int \exp\left(-\frac{H}{\varepsilon}\right) dx$

Generator evolution of $f_t = \rho_t / \mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t$

Introduction

Overdamped Langevin dynamics

Hamiltonian $H : \mathbb{R}^n \to \mathbb{R}$ energy landscape

Dynamic at temperature $\varepsilon \ll 1$ d $X_t = -\nabla H(X_t) dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp\left(-\frac{H}{\varepsilon}\right) dx$$
,
where $Z_{\mu} = \int \exp\left(-\frac{H}{\varepsilon}\right) dx$

Generator evolution of $f_t = \varrho_t / \mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t$

Introduction

Overdamped Langevin dynamics

Hamiltonian $H : \mathbb{R}^n \to \mathbb{R}$ energy landscape

Dynamic at temperature $\varepsilon \ll 1$ d $X_t = -\nabla H(X_t) dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp\left(-\frac{H}{\varepsilon}\right) dx$$
,
where $Z_{\mu} = \int \exp\left(-\frac{H}{\varepsilon}\right) dx$

Generator evolution of
$$f_t = \rho_t / \mu$$

 $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t$

Introduction

Overdamped Langevin dynamics

Hamiltonian $H : \mathbb{R}^n \to \mathbb{R}$ energy landscape

Dynamic at temperature $\varepsilon \ll 1$ d $X_t = -\nabla H(X_t) dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp\left(-\frac{H}{\varepsilon}\right) dx$$
,
where $Z_{\mu} = \int \exp\left(-\frac{H}{\varepsilon}\right) dx$

Generator evolution of
$$f_t = \rho_t / \mu$$

 $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t$

Definition

 μ satisfies the Poincaré inequality $\mathsf{Pl}(\varrho)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\mathsf{var}_{\mu}(f) := \int f^2 - \left(\int f \mathsf{d}\mu\right)^2 \mathsf{d}\mu \leq \frac{1}{\varrho} \int |
abla f|^2 \,\mathsf{d}\mu. \qquad \mathsf{PI}(\varrho)$$

and the logarithmic Sobolev inequality $\mathsf{LSI}(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{Ent}_{\mu}(f) := \int f \log \frac{f}{\int f d\mu} d\mu \leq \frac{1}{\alpha} \int \frac{|\nabla f|^2}{2f} d\mu.$$
 $\operatorname{LSI}(\alpha)$

 $PI(\rho)$ and $LSI(\alpha)$ imply exponential convergence to μ :

$$\begin{aligned} \mathsf{PI}(\varrho) \ \Rightarrow \ \mathsf{var}_{\mu}(f_t) \leq \mathsf{var}_{\mu}(f_0) e^{-2\varrho\varepsilon t} \\ \mathsf{LSI}(\alpha) \ \Rightarrow \ \mathsf{Ent}_{\mu}(f_t) \leq \mathsf{Ent}_{\mu}(f_0) e^{-2\alpha\varepsilon t} \end{aligned}$$

Definition

 μ satisfies the Poincaré inequality $\mathsf{Pl}(\varrho)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{var}_{\mu}(f) := \int f^2 - \left(\int f d\mu\right)^2 d\mu \leq \frac{1}{\varrho} \int |\nabla f|^2 d\mu. \qquad \operatorname{Pl}(\varrho)$$

and the logarithmic Sobolev inequality $\mathsf{LSI}(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{Ent}_{\mu}(f) := \int f \log \frac{f}{\int f d\mu} d\mu \leq \frac{1}{\alpha} \int \frac{|\nabla f|^2}{2f} d\mu.$$
 $\operatorname{LSI}(\alpha)$

 $PI(\rho)$ and $LSI(\alpha)$ imply exponential convergence to μ :

$$\begin{split} \mathsf{PI}(\varrho) \ \Rightarrow \ \mathsf{var}_{\mu}(f_t) &\leq \mathsf{var}_{\mu}(f_0) e^{-2\varrho\varepsilon t} \\ \mathsf{LSI}(\alpha) \ \Rightarrow \ \mathsf{Ent}_{\mu}(f_t) &\leq \mathsf{Ent}_{\mu}(f_0) e^{-2\alpha\varepsilon t} \end{split}$$

André Schlichting (IAM Bonn)

Definition

 μ satisfies the Poincaré inequality $\mathsf{Pl}(\varrho)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{var}_{\mu}(f) := \int f^2 - \left(\int f d\mu\right)^2 d\mu \leq \frac{1}{\varrho} \int |\nabla f|^2 d\mu. \qquad \operatorname{Pl}(\varrho)$$

and the logarithmic Sobolev inequality $\mathsf{LSI}(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{Ent}_{\mu}(f^{2}) := \int f^{2} \log \frac{f^{2}}{\int f^{2} d\mu} d\mu \leq \frac{2}{\alpha} \int |\nabla f|^{2} d\mu. \qquad \operatorname{LSI}(\alpha)$$

 $PI(\rho)$ and $LSI(\alpha)$ imply exponential convergence to μ :

$$\begin{array}{l} \mathsf{PI}(\varrho) \ \Rightarrow \ \mathsf{var}_{\mu}(f_t) \leq \mathsf{var}_{\mu}(f_0) e^{-2\varrho\varepsilon t} \\ \mathsf{LSI}(\alpha) \ \Rightarrow \ \mathsf{Ent}_{\mu}(f_t) \leq \mathsf{Ent}_{\mu}(f_0) e^{-2\alpha\varepsilon t} \end{array}$$

Definition

 μ satisfies the Poincaré inequality $\mathsf{Pl}(\varrho)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{var}_{\mu}(f) := \int f^2 - \left(\int f d\mu\right)^2 d\mu \leq \frac{1}{\varrho} \int |\nabla f|^2 d\mu. \qquad \operatorname{Pl}(\varrho)$$

and the logarithmic Sobolev inequality $\mathsf{LSI}(\alpha)$ if $\forall f : \mathbb{R}^n \to \mathbb{R}$

$$\operatorname{Ent}_{\mu}(f^{2}) := \int f^{2} \log \frac{f^{2}}{\int f^{2} d\mu} d\mu \leq \frac{2}{\alpha} \int |\nabla f|^{2} d\mu. \qquad \qquad \operatorname{LSI}(\alpha)$$

 $PI(\varrho)$ and $LSI(\alpha)$ imply exponential convergence to μ :

$$\mathsf{PI}(\varrho) \Rightarrow \mathsf{var}_{\mu}(f_t) \leq \mathsf{var}_{\mu}(f_0) e^{-2\varrho \varepsilon t} \\ \mathsf{LSI}(\alpha) \Rightarrow \mathsf{Ent}_{\mu}(f_t) \leq \mathsf{Ent}_{\mu}(f_0) e^{-2\alpha \varepsilon t}$$

Goal: Optimal constants in PI and LSI

Accurate estimates of ϱ and α in the regime $\varepsilon \ll 1$:

$$arrho = \mathcal{C}_{arrho}(arepsilon) e^{-rac{\Delta H}{arepsilon}}(1+o(1))$$
 and $lpha = \mathcal{C}_{lpha}(arepsilon) e^{-rac{\Delta H}{arepsilon}}(1+o(1)).$

Goal: Optimal constants in PI and LSI

Accurate estimates of ρ and α in the regime $\varepsilon \ll 1$:

$$\varrho = C_{\varrho}(\varepsilon)e^{-\frac{\Delta H}{\varepsilon}}(1+o(1))$$
 and $\alpha = C_{\alpha}(\varepsilon)e^{-\frac{\Delta H}{\varepsilon}}(1+o(1)).$

$$\mathrm{d}X_t = -
abla H(X_t) \,\mathrm{d}t + \sqrt{2arepsilon} \,\mathrm{d}W_t$$

- particle follows $-\nabla H$ as long as $|\nabla H| \sim 1$
- noise is dominant, if $|\nabla H| \lesssim \sqrt{\varepsilon}$

Figure : Trajectory for $\varepsilon = 0.4$

André Schlichting (IAM Bonn)

Figure : Trajectory for $\varepsilon = 0.2$

Figure : Trajectory for $\varepsilon = 0.1$

André Schlichting (IAM Bonn)

Figure : Trajectory for $\varepsilon = 0.05$ (red $\varepsilon = 0$)

André Schlichting (IAM Bonn)

Two scales by decomposition à la $[GOVW09]^1$

- The partition $\biguplus_i \Omega_i = \mathbb{R}^n$ is called admissible for μ if:
 - (i) For each local minimum $m_i \in \mathcal{M}$ exists $\Omega_i \in \mathcal{P}_{\mathcal{M}}$ with $m_i \in \Omega_i$
 - (ii) The partition sum of each Ω_i is approximately Gaussian

$$u(\Omega_i)Z_{\mu} = rac{(2\pi\varepsilon)^{rac{n}{2}}}{\sqrt{\det
abla^2 H(m_i)}} \exp\left(-rac{H(m_i)}{arepsilon}
ight) (1+o(1))\,.$$

Restricted measures: $\mu_i := \mu \llcorner \Omega_i$, i = 0, 1.

Macroscopic measures $\bar{\mu}$ on $\{0, 1\}$: $\bar{\mu} := Z_0 \delta_0 + Z_1 \delta_1.$

Mixture representation:

$$\mu = Z_0\mu_0 + Z_1\mu_1$$
 with $Z_i := \mu(\Omega_i)$.

¹N. Grunewald, F. Otto, C. Villani, and M. G. Westdickenberg, A^s twö-scäle appröach^ato ¹⁵ logarithmic Sobolev inequalities and the hydrodynamic limit, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 45:**2**, 2009.

André Schlichting (IAM Bonn)

Splitting

Ideas motivated from [CM10]²

$$\operatorname{var}_{\mu}(f) = \underbrace{Z_{0} \operatorname{var}_{\mu_{0}}(f) + Z_{1} \operatorname{var}_{\mu_{1}}(f)}_{\operatorname{local variances}} + \underbrace{Z_{0} Z_{1} \underbrace{\left(\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f)\right)^{2}}_{\operatorname{mean-difference}}}_{\operatorname{mean-difference}}$$

$$\operatorname{Ent}_{\mu}(f^{2}) = \underbrace{Z_{0} \operatorname{Ent}_{\mu_{0}}(f^{2}) + Z_{1} \operatorname{Ent}_{\mu_{1}}(f^{2})}_{\operatorname{Ent}_{\mu_{1}}(f^{2})} + \underbrace{\operatorname{Ent}_{\mu}\left(\mathbb{E}_{\mu_{\bullet}}(f^{2})\right)}_{\operatorname{Ent}_{\mu}\left(\mathbb{E}_{\mu_{\bullet}}(f^{2})\right)}$$

where
$$\Lambda(Z_0, Z_1) = \frac{Z_0 - Z_1}{\log Z_0 - \log Z_1}$$
 is the logarithmic mean.

Expect from heuristics:

- good estimate for local variances/entropies
- exponential estimate for mean-difference

²D. Chafaï and F. Malrieu, *On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities*, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 46:**1**, 2010.

André Schlichting (IAM Bonn)

Splitting

Ideas motivated from [CM10]²

$$\begin{aligned} \mathrm{var}_{\mu}(f) &= \underbrace{Z_{0} \operatorname{var}_{\mu_{0}}(f) + Z_{1} \operatorname{var}_{\mu_{1}}(f)}_{\text{local variances}} + Z_{0}Z_{1}\underbrace{\left(\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f)\right)^{2}}_{\text{mean-difference}} \\ & \text{Ent}_{\mu}(f^{2}) \leq \underbrace{Z_{0} \operatorname{Ent}_{\mu_{0}}(f^{2}) + Z_{1} \operatorname{Ent}_{\mu_{1}}(f^{2})}_{+ \frac{Z_{0}Z_{1}}{\Lambda(Z_{0}, Z_{1})}} \left(\operatorname{var}_{\mu_{0}}(f) + \operatorname{var}_{\mu_{1}}(f) + \left(\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f)\right)^{2}\right), \end{aligned}$$

where
$$\Lambda(Z_0, Z_1) = \frac{Z_0 - Z_1}{\log Z_0 - \log Z_1}$$
 is the logarithmic mean.

Expect from heuristics:

- good estimate for local variances/entropies
- exponential estimate for mean-difference

²D. Chafaï and F. Malrieu, *On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities*, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 46:**1**, 2010.

André Schlichting (IAM Bonn)

Splitting

Ideas motivated from [CM10]²

$$\operatorname{var}_{\mu}(f) = \underbrace{Z_{0} \operatorname{var}_{\mu_{0}}(f) + Z_{1} \operatorname{var}_{\mu_{1}}(f)}_{\operatorname{local variances}} + Z_{0}Z_{1} \underbrace{\left(\underbrace{\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f) \right)^{2}}_{\operatorname{mean-difference}} \right)^{2}}_{\operatorname{mean-difference}}$$

$$\operatorname{Ent}_{\mu}(f^{2}) \leq \underbrace{Z_{0} \operatorname{Ent}_{\mu_{0}}(f^{2}) + Z_{1} \operatorname{Ent}_{\mu_{1}}(f^{2})}_{+ Z_{1} \operatorname{Ent}_{\mu_{1}}(f^{2})} + \frac{Z_{0}Z_{1}}{\Lambda(Z_{0}, Z_{1})} \left(\operatorname{var}_{\mu_{0}}(f) + \operatorname{var}_{\mu_{1}}(f) + \left(\mathbb{E}_{\mu_{0}}(f) - \mathbb{E}_{\mu_{1}}(f) \right)^{2} \right),$$

where $\Lambda(Z_0, Z_1) = \frac{Z_0 - Z_1}{\log Z_0 - \log Z_1}$ is the logarithmic mean.

Expect from heuristics:

- good estimate for local variances/entropies
- exponential estimate for mean-difference

²D. Chafaï and F. Malrieu, *On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities*, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, 46:**1**, 2010.

André Schlichting (IAM Bonn)

3 Sketch of the Proofs

- Local PI and LSI
- Mean-difference estimate

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{\mathsf{loc}})$ and $\mathsf{LSI}(\alpha_{\mathsf{loc}})$ with

$$\varrho_{loc}^{-1} = O(\varepsilon) \quad \text{and} \quad \alpha_{loc}^{-1} = O(1).$$

PI is as good as for convex potential

Non-convexity of potential worsens LSI

• Both results scale optimal in one dimension

Theorem (Mean-difference estimate)

 $(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{\ell}{2}}} \; \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} \; e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \, \mathrm{d}\mu.$

 \lesssim ": up to multiplicative error 1+o(1) as arepsilon o 0.

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{\mathsf{loc}})$ and $\mathsf{LSI}(\alpha_{\mathsf{loc}})$ with

$$\varrho_{loc}^{-1} = O(\varepsilon) \quad \text{and} \quad \alpha_{loc}^{-1} = O(1).$$

• PI is as good as for convex potential

- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate)

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \; \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} \; e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \, \mathrm{d}\mu.$$

' \lesssim '': up to multiplicative error 1+o(1) as arepsilon o 0.

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{\mathsf{loc}})$ and $\mathsf{LSI}(\alpha_{\mathsf{loc}})$ with

$$\varrho_{loc}^{-1} = O(\varepsilon) \quad \text{and} \quad \alpha_{loc}^{-1} = O(1).$$

- PI is as good as for convex potential
- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate)

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \; \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} \; e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \, \mathrm{d}\mu.$$

' \lesssim '': up to multiplicative error 1+o(1) as arepsilon o 0.

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{\mathsf{loc}})$ and $\mathsf{LSI}(\alpha_{\mathsf{loc}})$ with

$$\varrho_{loc}^{-1} = O(\varepsilon) \quad \text{and} \quad \alpha_{loc}^{-1} = O(1).$$

- PI is as good as for convex potential
- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate)

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim \frac{Z_{\mu}}{(2\pi\varepsilon)^{\frac{n}{2}}} \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} \ e^{\varepsilon^{-1}H(s_{0,1})} \int |\nabla f|^2 \,\mathrm{d}\mu.$$

' \lesssim '': up to multiplicative error 1+o(1) as arepsilon o 0.

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{\mathsf{loc}})$ and $\mathsf{LSI}(\alpha_{\mathsf{loc}})$ with

$$\varrho_{loc}^{-1} = O(\varepsilon) \quad \text{and} \quad \alpha_{loc}^{-1} = O(1).$$

- PI is as good as for convex potential
- Non-convexity of potential worsens LSI
- Both results scale optimal in one dimension

Theorem (Mean-difference estimate)

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \lesssim rac{Z_\mu}{(2\piarepsilon)^{rac{n}{2}}} \; rac{2\piarepsilon\sqrt{|\det
abla^2 H(s_{0,1})|}}{|\lambda^-(
abla^2 H(s_{0,1}))|} \; e^{arepsilon^{-1} H(s_{0,1})} \int |
abla f|^2 \, \mathrm{d}\mu.$$

" \lesssim ": up to multiplicative error 1 + o(1) as $\varepsilon \to 0$.

Eyring-Kramers formula

Corollary

The measure μ satisfies $PI(\varrho)$ and $LSI(\alpha)$ with

$$\frac{1}{\varrho} \approx Z_0 Z_1 \frac{Z_\mu}{(2\pi\varepsilon)^{\frac{n}{2}}} \ \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} e^{\frac{H(s_{0,1})}{\varepsilon}} \quad \text{and} \quad \frac{2}{\alpha} \approx \frac{1}{\Lambda(Z_0,Z_1) \ \varrho}.$$

Asymptotic evaluation of the factor $\Lambda(Z_0,Z_1)$ for two special cases:

$$H(m_0) < H(m_1): \quad \frac{\varrho}{\alpha} \approx \frac{1}{2} \left(\frac{H(m_1) - H(m_0)}{\varepsilon} + \log\left(\frac{\kappa_0}{\kappa_1}\right) \right) = O(\varepsilon^{-1})$$
$$H(m_0) = H(m_1): \quad \frac{\varrho}{\alpha} \approx \frac{\frac{\kappa_0 + \kappa_1}{2}}{\Lambda(\kappa_0, \kappa_1)} = O(1),$$

where $\kappa_i := \sqrt{\det \nabla^2 H(m_i)}$.

Eyring-Kramers formula

Corollary

The measure μ satisfies $PI(\varrho)$ and $LSI(\alpha)$ with

$$\frac{1}{\varrho} \approx Z_0 Z_1 \frac{Z_\mu}{(2\pi\varepsilon)^{\frac{n}{2}}} \; \frac{2\pi\varepsilon\sqrt{|\det\nabla^2 H(s_{0,1})|}}{|\lambda^-(\nabla^2 H(s_{0,1}))|} e^{\frac{H(s_{0,1})}{\varepsilon}} \quad \text{and} \quad \frac{2}{\alpha} \approx \frac{1}{\Lambda(Z_0, Z_1) \; \varrho}.$$

Asymptotic evaluation of the factor $\Lambda(Z_0, Z_1)$ for two special cases:

$$\begin{split} H(m_0) < H(m_1) : \quad & \frac{\varrho}{\alpha} \approx \frac{1}{2} \left(\frac{H(m_1) - H(m_0)}{\varepsilon} + \log\left(\frac{\kappa_0}{\kappa_1}\right) \right) = O(\varepsilon^{-1}) \\ H(m_0) = H(m_1) : \quad & \frac{\varrho}{\alpha} \approx \frac{\frac{\kappa_0 + \kappa_1}{2}}{\Lambda(\kappa_0, \kappa_1)} = O(1), \\ & \text{where } \kappa_i := \sqrt{\det \nabla^2 H(m_i)} \end{split}$$

3 Sketch of the Proofs

- Local PI and LSI
- Mean-difference estimate

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

 $\varrho_{loc}^{-1} = O(\varepsilon) \quad \text{and} \quad \alpha_{loc}^{-1} = O(1).$

- lack of convexity of H on Ω
 ⇒ rules out Bakry-Émery criterion
- non-exponential behavior of constants
 ⇒ rules out Holley-Stroock perturbation principle
- optimality available in one dimension
 ⇒ Muckenhoupt and Bobkov/Götze functional

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

 $\varrho_{loc}^{-1} = O(\varepsilon) \quad \text{and} \quad \alpha_{loc}^{-1} = O(1).$

- lack of convexity of H on Ω \Rightarrow rules out Bakry-Émery criterion
- non-exponential behavior of constants
 ⇒ rules out Holley-Stroock perturbation principle
- optimality available in one dimension
 ⇒ Muckenhoupt and Bobkov/Götze functional

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

$$arrho_{loc}^{-1} = O(arepsilon)$$
 and $lpha_{loc}^{-1} = O(1).$

- lack of convexity of H on Ω
 ⇒ rules out Bakry-Émery criterion
- non-exponential behavior of constants
 ⇒ rules out Holley-Stroock perturbation principle
- optimality available in one dimension
 ⇒ Muckenhoupt and Bobkov/Götze functional

Theorem (Local PI and LSI)

There exists an admissible partition $\biguplus_i \Omega_i = \mathbb{R}^n$ such that each local measure $\mu_i = \mu_{\perp}\Omega_i$ satisfies $\mathsf{PI}(\varrho_{loc})$ and $\mathsf{LSI}(\alpha_{loc})$ with

 $\varrho_{loc}^{-1} = O(\varepsilon) \quad \text{and} \quad \alpha_{loc}^{-1} = O(1).$

- lack of convexity of H on Ω
 ⇒ rules out Bakry-Émery criterion
- non-exponential behavior of constants
 ⇒ rules out Holley-Stroock perturbation principle
- optimality available in one dimension
 - \Rightarrow Muckenhoupt and Bobkov/Götze functional
Proof: Local PI and LSI via Lyapunov condition universitation important in the second second

Technique developed by Bakry, Barthe, Cattiaux, Guillin, Wang and Wu 2008-

Definition (Lyapunov condition on domains)

L satisfies a Lyapunov condition with constants $\lambda, b > 0$ and some $U \subset \Omega$, if there exists a Lyapunov function $W : \Omega \to [1, \infty)$ satisfying

$$\frac{LW}{\varepsilon W} \leq -\lambda + b \, \mathbb{1}_U.$$

and Neumann boundary condition on Ω , such that integration by parts holds $\int_{\Omega} f(-LW) \, \mathrm{d}\mu = \varepsilon \int_{\Omega} \langle \nabla f, \nabla W \rangle \, \mathrm{d}\mu.$

Theorem ([BBCG08])

Suppose L satisfies a Lyapunov condition and $\mu \sqcup U$ satisfies $PI(\varrho_U)$, then μ satisfies $PI(\varrho)$ with λ

$$\varrho \ge \frac{\lambda}{b + \varrho \upsilon} \varrho \upsilon$$

Proof: Local PI and LSI via Lyapunov condition universitation in

Technique developed by Bakry, Barthe, Cattiaux, Guillin, Wang and Wu 2008-

Definition (Lyapunov condition on domains)

L satisfies a Lyapunov condition with constants $\lambda, b > 0$ and some $U \subset \Omega$, if there exists a Lyapunov function $W : \Omega \to [1, \infty)$ satisfying

$$\frac{LW}{\varepsilon W} \leq -\lambda + b \, \mathbb{1}_U.$$

and Neumann boundary condition on Ω , such that integration by parts holds $\int_{\Omega} f(-LW) \, \mathrm{d}\mu = \varepsilon \int_{\Omega} \langle \nabla f, \nabla W \rangle \, \mathrm{d}\mu.$

Theorem ([BBCG08])

Suppose L satisfies a Lyapunov condition and $\mu \sqcup U$ satisfies $PI(\varrho_U)$, then μ satisfies $PI(\varrho)$ with λ

$$\varrho \geq \frac{\lambda}{b + \varrho \upsilon} \varrho \upsilon$$

Proof: Lyapunov \Rightarrow PI(ϱ)

Integration by parts of W wrt. to L yields

$$\begin{split} \int_{\Omega} f^2 \frac{(-LW)}{\varepsilon W} \mathrm{d}\mu &= \int_{\Omega} \left\langle \nabla \frac{f^2}{W}, \nabla W \right\rangle \mathrm{d}\mu \\ &= 2 \int_{\Omega} \frac{f}{W} \left\langle \nabla f, \nabla W \right\rangle \mathrm{d}\mu - \int_{\Omega} \frac{f^2 \left| \nabla W \right|^2}{W^2} \mathrm{d}\mu \\ &= \int_{\Omega} \left| \nabla f \right|^2 \mathrm{d}\mu - \int_{\Omega} \left| \nabla f - \frac{f}{W} \nabla W \right|^2 \mathrm{d}\mu. \end{split}$$

The Lyapunov conditions ensures $1 \leq \frac{-LW}{\lambda \in W} + \frac{b}{\lambda} \mathbb{1}_U$:

$$\operatorname{var}_{\mu}(f) = \int_{\Omega} (f - \overline{f})^2 \mathrm{d}\mu$$

Proof: Lyapunov \Rightarrow PI(ϱ)

Integration by parts of W wrt. to L yields

$$\begin{split} \int_{\Omega} f^2 \frac{(-\mathcal{L}W)}{\varepsilon W} \mathrm{d}\mu &= \int_{\Omega} \left\langle \nabla \frac{f^2}{W}, \nabla W \right\rangle \mathrm{d}\mu \\ &= 2 \int_{\Omega} \frac{f}{W} \left\langle \nabla f, \nabla W \right\rangle \mathrm{d}\mu - \int_{\Omega} \frac{f^2 \left| \nabla W \right|^2}{W^2} \mathrm{d}\mu \\ &\leq \int_{\Omega} |\nabla f|^2 \, \mathrm{d}\mu \end{split}$$

The Lyapunov conditions ensures $1 \leq \frac{-LW}{\lambda \in W} + \frac{b}{\lambda} \mathbb{1}_U$:

Proof: Lyapunov \Rightarrow PI(ϱ)

Integration by parts of W wrt. to L yields

$$\begin{split} \int_{\Omega} f^2 \frac{(-\mathcal{L}W)}{\varepsilon W} \mathrm{d}\mu &= \int_{\Omega} \left\langle \nabla \frac{f^2}{W}, \nabla W \right\rangle \mathrm{d}\mu \\ &= 2 \int_{\Omega} \frac{f}{W} \left\langle \nabla f, \nabla W \right\rangle \mathrm{d}\mu - \int_{\Omega} \frac{f^2 \left| \nabla W \right|^2}{W^2} \mathrm{d}\mu \\ &\leq \int_{\Omega} |\nabla f|^2 \, \mathrm{d}\mu \end{split}$$

The Lyapunov conditions ensures $1 \leq \frac{-LW}{\lambda \in W} + \frac{b}{\lambda} \mathbb{1}_U$:

$$\mathsf{var}_\mu(f) = \int_\Omega (f-ar f)^2 \mathsf{d}\mu$$

Proof: Lyapunov \Rightarrow PI(ϱ)

Integration by parts of W wrt. to L yields

$$\begin{split} \int_{\Omega} f^2 \frac{(-\mathcal{L}W)}{\varepsilon W} \mathrm{d}\mu &= \int_{\Omega} \left\langle \nabla \frac{f^2}{W}, \nabla W \right\rangle \mathrm{d}\mu \\ &= 2 \int_{\Omega} \frac{f}{W} \left\langle \nabla f, \nabla W \right\rangle \mathrm{d}\mu - \int_{\Omega} \frac{f^2 \left| \nabla W \right|^2}{W^2} \mathrm{d}\mu \\ &\leq \int_{\Omega} |\nabla f|^2 \, \mathrm{d}\mu \end{split}$$

The Lyapunov conditions ensures $1 \leq \frac{-LW}{\lambda \in W} + \frac{b}{\lambda} \mathbb{1}_U$:

$$\mathsf{var}_{\mu}(f) \leq \int_{\Omega} (f - ar{f}_U)^2 \mathsf{d}\mu$$

Proof: Lyapunov \Rightarrow PI(ϱ)

Integration by parts of W wrt. to L yields

$$\begin{split} \int_{\Omega} f^2 \frac{(-LW)}{\varepsilon W} \mathrm{d}\mu &= \int_{\Omega} \left\langle \nabla \frac{f^2}{W}, \nabla W \right\rangle \mathrm{d}\mu \\ &= 2 \int_{\Omega} \frac{f}{W} \left\langle \nabla f, \nabla W \right\rangle \mathrm{d}\mu - \int_{\Omega} \frac{f^2 \left| \nabla W \right|^2}{W^2} \mathrm{d}\mu \\ &\leq \int_{\Omega} |\nabla f|^2 \, \mathrm{d}\mu \end{split}$$

The Lyapunov conditions ensures $1 \leq \frac{-LW}{\lambda \varepsilon W} + \frac{b}{\lambda} \mathbb{1}_U$:

$$\mathsf{var}_{\mu}(f) \leq \int_{\Omega} (f - ar{f}_U)^2 \mathsf{d}\mu \leq \int_{\Omega} (f - ar{f}_U)^2 rac{-LW}{\lambda arepsilon W} \mathsf{d}\mu + rac{b}{\lambda} \int_U (f - ar{f}_U)^2 \mathsf{d}\mu$$

Proof: Lyapunov \Rightarrow PI(ϱ)

Integration by parts of W wrt. to L yields

$$\begin{split} \int_{\Omega} f^2 \frac{(-LW)}{\varepsilon W} \mathrm{d}\mu &= \int_{\Omega} \left\langle \nabla \frac{f^2}{W}, \nabla W \right\rangle \mathrm{d}\mu \\ &= 2 \int_{\Omega} \frac{f}{W} \left\langle \nabla f, \nabla W \right\rangle \mathrm{d}\mu - \int_{\Omega} \frac{f^2 \left| \nabla W \right|^2}{W^2} \mathrm{d}\mu \\ &\leq \int_{\Omega} |\nabla f|^2 \, \mathrm{d}\mu \end{split}$$

The Lyapunov conditions ensures $1 \leq \frac{-LW}{\lambda \varepsilon W} + \frac{b}{\lambda} \mathbb{1}_U$:

$$egin{aligned} \mathsf{var}_{\mu}(f) &\leq \int_{\Omega} (f - ar{f}_U)^2 \mathsf{d}\mu \leq \int_{\Omega} (f - ar{f}_U)^2 rac{-LW}{\lambda arepsilon W} \mathsf{d}\mu + rac{b}{\lambda} \int_U (f - ar{f}_U)^2 \mathsf{d}\mu \ &\leq rac{1}{\lambda} \int_{\Omega} |
abla f|^2 \, \mathsf{d}\mu + rac{b}{\lambda arepsilon_U} \int_U |
abla f|^2 \, \mathsf{d}\mu. \end{aligned}$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \ \mathbb{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz $W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$, where \tilde{H} is an ε -perturbation of H $\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta \tilde{H} - \frac{1}{4\varepsilon}|\nabla \tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$

if x is √ε-away from critical points: ε⁻¹|∇H̃(x)|² ≥ 4λ
 if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \ \mathbb{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz
$$W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$$
, where \tilde{H} is an ε -perturbation of H
$$\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta \tilde{H} - \frac{1}{4\varepsilon}|\nabla \tilde{H}|^2 \leq -\lambda.$$

if x is √ε-away from critical points: ε⁻¹|∇Ĥ(x)|² ≥ 4λ
 if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \ \mathbb{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz
$$W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$$
, where \tilde{H} is an ε -perturbation of H
$$\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{4\varepsilon}|\nabla\tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$$

if x is √ε-away from critical points: ε⁻¹|∇Ĥ(x)|² ≥ 4λ
 if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \, \mathbbm{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz
$$W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$$
, where \tilde{H} is an ε -perturbation of H
$$\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta\tilde{H} - \frac{1}{4\varepsilon}|\nabla\tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$$

if x is √ε-away from critical points: ε⁻¹|∇H̃(x)|² ≥ 4λ
 if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \, \mathbbm{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz $W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$, where \tilde{H} is an ε -perturbation of H $\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta \tilde{H} - \frac{1}{4\varepsilon}|\nabla \tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$

if x is √ε-away from critical points: ε⁻¹|∇ Ĥ(x)|² ≥ 4λ
if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \, \mathbbm{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz $W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$, where \tilde{H} is an ε -perturbation of H $\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta \tilde{H} - \frac{1}{4\varepsilon}|\nabla \tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$

if x is √ε-away from critical points: ε⁻¹|∇ Ĥ(x)|² ≥ 4λ
if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \cdots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \cdots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Lyapunov function

• Task: Find a function $W: \Omega \to [1,\infty)$ such that

$$rac{LW}{W} \leq -\lambda + b \, \mathbbm{1}_{B_{a\sqrt{arepsilon}}(m)}.$$

• Ansatz $W = \exp\left(\frac{\tilde{H}}{2\varepsilon}\right)$, where \tilde{H} is an ε -perturbation of H $\frac{\tilde{L}W}{W} = \frac{1}{2}\Delta \tilde{H} - \frac{1}{4\varepsilon}|\nabla \tilde{H}|^2 \stackrel{!}{\leq} -\lambda.$

if x is √ε-away from critical points: ε⁻¹|∇ Ĥ(x)|² ≥ 4λ
if x is √ε-nearby a critical point of index k ≥ 1

$$\Delta \tilde{H}(x) = \underbrace{\tilde{\lambda}_1^- + \dots + \tilde{\lambda}_k^-}_{<0} + \underbrace{\tilde{\lambda}_{k+1}^+ + \dots + \tilde{\lambda}_n^+}_{>0} + O(\sqrt{\varepsilon})$$

Construction of Lyapunov function

Figure : *H* around a saddle point

 $ilde{H}$ is quadratic perturbation of H in $\sqrt{arepsilon}$ -neighborhoods of critical points:

$$\sup_{x} \left| H(x) - \tilde{H}(x) \right| = O(\varepsilon).$$

Construction of Lyapunov function

Figure : *H* around a saddle point

Figure : \tilde{H} around a saddle point

 $ilde{H}$ is quadratic perturbation of H in $\sqrt{arepsilon}$ -neighborhoods of critical points:

$$\sup_{x} \left| H(x) - \tilde{H}(x) \right| = O(\varepsilon).$$

Goal: Find a good estimate for C in $(\mathbb{E}_{\mu_0}(f) - \mathbb{E}_{\mu_1}(f))^2 \leq C \int |\nabla f|^2 d\mu.$

Approximation step

Goal: Find a good estimate for C in $\left(\mathbb{E}_{\mu_0}(f) - \mathbb{E}_{\mu_1}(f)\right)^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

Step 1: Approximate μ_0 and μ_1 by truncated Gaussians ν_0 and ν_1 :

 $u_i \sim \mathcal{N}(m_i, \varepsilon \Sigma_i) \llcorner B_{\sqrt{\varepsilon}}(m_i) \text{ with } \Sigma_i^{-1} := \nabla^2 H(m_i).$

Introduce ν_0 and ν_1 as coupling:

$$\left(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f\right)^2 \le (1+\tau)\underbrace{\left(\mathbb{E}_{\nu_0}f - \mathbb{E}_{\nu_1}f\right)^2}_{\bullet}$$

transport argument

$$+2(1+ au^{-1})\sum_{i=\{0,1\}} \underbrace{(\mathbb{E}_{\mu_i}f-\mathbb{E}_{
u_i}f)^2}_{ ext{approximation bound}}$$

Approximation bound follows from local PI and local LSI.

André Schlichting (IAM Bonn)

Optimal PI and LSI

Approximation step

Goal: Find a good estimate for C in $\left(\mathbb{E}_{\mu_0}(f) - \mathbb{E}_{\mu_1}(f)\right)^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

Step 1: Approximate μ_0 and μ_1 by truncated Gaussians ν_0 and ν_1 :

$$u_i \sim \mathcal{N}(m_i, \varepsilon \Sigma_i) \llcorner B_{\sqrt{\varepsilon}}(m_i) \text{ with } \Sigma_i^{-1} \coloneqq \nabla^2 H(m_i).$$

Introduce ν_0 and ν_1 as coupling:

$$(\mathbb{E}_{\mu_0}f - \mathbb{E}_{\mu_1}f)^2 \leq (1+\tau)\underbrace{(\mathbb{E}_{\nu_0}f - \mathbb{E}_{\nu_1}f)^2}_{\text{transport argument}} + 2(1+\tau^{-1})\underbrace{\sum_{i=\{0,1\}}\underbrace{(\mathbb{E}_{\mu_i}f - \mathbb{E}_{\nu_i}f)^2}_{\text{approximation bound}}$$

Approximation bound follows from local PI and local LSI.

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \, \mathrm{d}\mu.$

$$\left(\int f\,\mathrm{d}\nu_0 - \int f\,\mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s}(f\circ\Phi_s)\,\mathrm{d}s\,\mathrm{d}\nu_0\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int \int_0^1 \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 d\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s \circ \Phi_s^{-1}, \nabla f \right\rangle \mathrm{d}\nu_s \, \mathrm{d}s\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{
u_0}(f) - \mathbb{E}_{
u_1}(f))^2 \leq C \int |
abla f|^2 \,\mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s \circ \Phi_s^{-1}, \nabla f \right\rangle \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}\mu \, \mathrm{d}s\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 d\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$
$$= \left(\int \int_0^1 \left\langle \dot{\Phi}_s \circ \Phi_s^{-1}, \nabla f \right\rangle \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}s \, \mathrm{d}\mu\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \, \mathrm{d}\mu.$

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2$$
$$= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2$$
$$= \left(\int \left\langle \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \, \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}s, \nabla f \right\rangle \mathrm{d}\mu\right)^2$$

Transport interpolation

Goal: Find a good estimate for C in $(\mathbb{E}_{\nu_0}(f) - \mathbb{E}_{\nu_1}(f))^2 \leq C \int |\nabla f|^2 \,\mathrm{d}\mu.$

$$\begin{split} \left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 &= \left(\int \int_0^1 \frac{\mathrm{d}}{\mathrm{d}s} (f \circ \Phi_s) \, \mathrm{d}s \, \mathrm{d}\nu_0\right)^2 \\ &= \left(\int_0^1 \int \left\langle \dot{\Phi}_s, \nabla f \circ \Phi_s \right\rangle \mathrm{d}\nu_0 \, \mathrm{d}s\right)^2 \\ &= \left(\int \left\langle \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \, \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}s, \nabla f \right\rangle \mathrm{d}\mu\right)^2 \\ &\leq \int \left|\int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \, \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \, \mathrm{d}s \right|^2 \mathrm{d}\mu \int |\nabla f|^2 \, \mathrm{d}\mu \end{split}$$

Sideremark: Weighted transport distance

Definition

For $\nu_0, \nu_1 \ll \mu$ define the weighted transport distance by

$$\mathcal{T}^2_{\mu}(\nu_0,\nu_1) = \inf_{\{\Phi_s\}} \int \left| \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \; \frac{\mathsf{d}\nu_s}{\mathsf{d}\mu} \; \mathsf{d}s \right|^2 \mathsf{d}\mu.$$

 $(\Phi_s)_{s\in[0,1]}$ is absolutely continuous in s: $(\Phi_s)_{\sharp}\nu_0 = \nu_s$.

Mean-difference revisited: Identify $\int |
abla f|^2 \,\mathrm{d}\mu = \|f\|^2_{\dot{H}^1(\mu)}$, then

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1\right)^2 = \left(_{\dot{H}^{-1}(\mu)} \langle \nu_0 - \nu_1, f \rangle_{\dot{H}^1(\mu)}\right)^2 \\ \leq \mathcal{T}^2_{\mu}(\nu_0, \nu_1) \, \|f\|^2_{\dot{H}^1(\mu)} \,.$$

Indeed, it holds: $\mathcal{T}^2_{\mu}(
u_0,
u_1) = \|
u_0 -
u_1\|^2_{\dot{H}^{-1}(\mu)}$

Sideremark: Weighted transport distance

Definition

For $\nu_0, \nu_1 \ll \mu$ define the weighted transport distance by

$$\mathcal{T}^2_{\mu}(\nu_0,\nu_1) = \inf_{\{\Phi_s\}} \int \left| \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \; \frac{\mathsf{d}\nu_s}{\mathsf{d}\mu} \; \mathsf{d}s \right|^2 \mathsf{d}\mu.$$

 $(\Phi_s)_{s\in[0,1]}$ is absolutely continuous in s: $(\Phi_s)_{\sharp}\nu_0 = \nu_s$.

Mean-difference revisited: Identify $\int |
abla f|^2 d\mu = \|f\|_{\dot{H}^1(\mu)}^2$, then

$$\left(\int f \, \mathrm{d}\nu_0 - \int f \, \mathrm{d}\nu_1 \right)^2 = \left(_{\dot{H}^{-1}(\mu)} \langle \nu_0 - \nu_1, f \rangle_{\dot{H}^1(\mu)} \right)^2 \\ \leq \mathcal{T}^2_{\mu}(\nu_0, \nu_1) \, \|f\|^2_{\dot{H}^1(\mu)} \, .$$

Indeed, it holds: $\mathcal{T}^2_{\mu}(\nu_0, \nu_1) = \|\nu_0 - \nu_1\|^2_{\dot{H}^{-1}(\mu)}$.

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$

(1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$ (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$ (3) optimize $\Sigma_{\tau^*} \Rightarrow \Sigma_{\tau^*}^{-1} = \nabla^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \llcorner B_{\sqrt{\varepsilon}}(\gamma_s)$

optimize γ ⇒ passage of saddle γ_{τ*} = s_{0,1}
 optimize γ_{τ*} ⇒ direction of eigenvector to λ⁻(∇²H(s_{0,1}))
 optimize Σ_{τ*} ⇒ Σ_τ⁻¹ = ∇²H(s_{0,1}) on stable manifold of s_{0,1}

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$
(1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$
(2) optimize γ_{τ^*}
(3) optimize Σ_{τ^*}

Construction of transport interpolation

Step 3: Ansatz Φ_s such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$ (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$ (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$ (3) optimize Σ_{τ^*}

Construction of transport interpolation

Step 3: Ansatz Φ_s such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$ (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$ (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$ (3) optimize Σ_{τ^*}

Proof: Mean-difference estimate

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \llcorner B_{\sqrt{\varepsilon}}(\gamma_s)$

- (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$
- (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$
- (3) optimize $\Sigma_{ au^*} \Rightarrow \Sigma_{ au^*}^{-1} =
 abla^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

Proof: Mean-difference estimate

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp} \nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$

- (1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$
- (2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$
- (3) optimize $\Sigma_{ au^*} \Rightarrow \Sigma_{ au^*}^{-1} =
 abla^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

Proof: Mean-difference estimate

Construction of transport interpolation

Step 3: Ansatz
$$\Phi_s$$
 such that $\nu_s = (\Phi_s)_{\sharp}\nu_0 = \mathcal{N}(\gamma_s, \Sigma_s) \sqcup B_{\sqrt{\varepsilon}}(\gamma_s)$
(1) optimize $\gamma \Rightarrow$ passage of saddle $\gamma_{\tau^*} = s_{0,1}$
(2) optimize $\dot{\gamma}_{\tau^*} \Rightarrow$ direction of eigenvector to $\lambda^-(\nabla^2 H(s_{0,1}))$

(3) optimize $\Sigma_{\tau^*} \Rightarrow \Sigma_{\tau^*}^{-1} = \nabla^2 H(s_{0,1})$ on stable manifold of $s_{0,1}$

2 Main results

3 Sketch of the Proofs

- Local PI and LSI
- Mean-difference estimate

Investigation of specific energy landscape:

Features:

- two global minima *a*, *b*
- additional local minimum c
- saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

degenerated:

$$|H(s_{a,b}) - H(s_{a,c})| = \delta$$
 small

Investigation of specific energy landscape:

Features:

- $\bullet\,$ two global minima a,b
- additional local minimum c
- saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

degenerated:

$$|H(s_{a,b}) - H(s_{a,c})| = \delta$$
 small

Investigation of specific energy landscape:

Features:

- two global minima *a*, *b*
- additional local minimum c

• saddle points s_{a,b}, s_{a,c}, s_{c,b}

degenerated:

$$|H(s_{a,b}) - H(s_{a,c})| = \delta$$
 small

Investigation of specific energy landscape:

Features:

- two global minima *a*, *b*
- additional local minimum c
- saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

degenerated:

$$|H(s_{a,b}) - H(s_{a,c})| = \delta$$
 small

Investigation of specific energy landscape:

Features:

- two global minima *a*, *b*
- additional local minimum c
- saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

degenerated:

$$|H(s_{a,b}) - H(s_{a,c})| = \delta$$
 small

Investigation of specific energy landscape:

Features:

- two global minima *a*, *b*
- additional local minimum c
- saddle points s_{a,b}, s_{a,c}, s_{c,b}

degenerated:

$$|H(s_{a,b}) - H(s_{a,c})| = \delta$$
 small

Investigation of specific energy landscape:

Features:

- two global minima *a*, *b*
- additional local minimum c
- saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

degenerated:

$$|H(s_{a,b}) - H(s_{a,c})| = \delta$$
 small

Fluxes and reaction rates

Interpretation as chemical reactions

•
$$A = \{|x - a| \le r\}$$
 reactant

•
$$B = \{|x - a| \le r\}$$
 product

• $C = \{|x - a| \le r\}$ intermediate product

What are typical reaction rates and paths?

How to define the reaction rate?

Steady state with inflow of reactants and outflow of products:

 $Lh_{A,B} = 0$ in $(A \cup B)^c$ and $h_{A,B} = \mathbb{1}_A$ in $A \cup B$.

Definition (Reaction rate)

$$k_{A,B} := \varepsilon \int |J_{A,B}|^2 d\mu = \varepsilon \int |\nabla h_{A,B}|^2 d\mu.$$

André Schlichting (IAM Bonn)

Optimal PI and LS

Fluxes and reaction rates

Interpretation as chemical reactions

•
$$A = \{|x - a| \le r\}$$
 reactant

• $C = \{|x - a| \le r\}$ intermediate product

What are typical reaction rates and paths?

How to define the reaction rate?

Steady state with inflow of reactants and outflow of products:

$$Lh_{A,B} = 0$$
 in $(A \cup B)^c$ and $h_{A,B} = \mathbb{1}_A$ in $A \cup B$.

Definition (Reaction rate)

$$k_{A,B} := \varepsilon \int |J_{A,B}|^2 \,\mathrm{d}\mu = \varepsilon \int |\nabla h_{A,B}|^2 \,\mathrm{d}\mu.$$

André Schlichting (IAM Bonn)

Optimal PI and LS

Fluxes and reaction rates

Interpretation as chemical reactions

•
$$A = \{|x - a| \le r\}$$
 reactant

•
$$B = \{|x - a| \le r\}$$
 product

• $C = \{|x - a| \le r\}$ intermediate product

What are typical reaction rates and paths?

How to define the reaction rate?

Steady state with inflow of reactants and outflow of products:

$$Lh_{A,B} = 0$$
 in $(A \cup B)^c$ and $h_{A,B} = \mathbb{1}_A$ in $A \cup B$.

Definition (Reaction rate)

$$k_{A,B} := \varepsilon \int |J_{A,B}|^2 \,\mathrm{d}\mu = \varepsilon \int |\nabla h_{A,B}|^2 \,\mathrm{d}\mu.$$

André Schlichting (IAM Bonn)

Entropic switching

Numerics: P. Metzner, C. Schütte and E. Vanden-Eijnden 2006 [MSVE06]

[MSVE06] P. Metzner, C. Schütte, and E. Vanden-Eijnden, *Illustration of transition path theory on a collection of simple examples.* The Journal of chemical physics, 125:**8**, 2006.

series and parallel law

• minima become nodes

- saddles become resistors
- boundary condition becomes voltage source

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

- minima become nodes
- saddles become resistors
- boundary condition becomes voltage source

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

- minima become nodes
- saddles become resistors
- boundary condition becomes voltage source

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

.

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}} \stackrel{\text{Ohm}}{=} k_{A,B}.$$

Result and comparison with numerical data

Identification can be justified using the weighted transport distance

Series and parallel law for transport cost

$$k_{A,B} pprox rac{1}{\mathcal{T}_{\mu}^2(\mu\llcorner A, \mu\llcorner B)} pprox rac{1}{\mathcal{T}_{AB}} + rac{1}{\mathcal{T}_{AC} + \mathcal{T}_{CB}},$$

where

$$T_{AB} = \inf_{\Phi \in \Pi(s_{AB})} \int \left| \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \left| \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \right|^2 \mathrm{d}\mu.$$

 $\Pi(s_{AB})$: transport interpolations between $\mu \llcorner A$ and $\mu \llcorner B$ across s_{AB} .

	$\varepsilon = 0.15$	
[MSVE06] TPT, flux	$9.47 imes 10^{-8}$	$1.912 imes 10^{-2}$
[MSVE06] TPT, commitor	$9.22 imes 10^{-8}$	$1.924 imes10^{-2}$
transport, numerical Z_{μ}	$9.33 imes10^{-8}$	$1.926 imes 10^{-2}$

Result and comparison with numerical data

Identification can be justified using the weighted transport distance

Series and parallel law for transport cost

$$k_{A,B} pprox rac{1}{\mathcal{T}_{\mu}^2(\mu\llcorner A, \mu\llcorner B)} pprox rac{1}{\mathcal{T}_{AB}} + rac{1}{\mathcal{T}_{AC} + \mathcal{T}_{CB}},$$

where

$$T_{AB} = \inf_{\Phi \in \Pi(s_{AB})} \int \left| \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \left| \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \right|^2 \mathrm{d}\mu.$$

 $\Pi(s_{AB})$: transport interpolations between $\mu \sqcup A$ and $\mu \sqcup B$ across s_{AB} .

	$\varepsilon = 0.15$	
[MSVE06] TPT, flux [MSVE06] TPT, commitor	9.47×10^{-8} 9.22×10^{-8}	1.912×10^{-2} 1.924×10^{-2} $1.026 = 10^{-2}$
transport, numerical Z_{μ}	$9.33 imes 10^{-\circ}$	1.926×10^{-2}

Result and comparison with numerical data

Identification can be justified using the weighted transport distance

Series and parallel law for transport cost

$$k_{A,B} pprox rac{1}{\mathcal{T}_{\mu}^2(\mu\llcorner A, \mu\llcorner B)} pprox rac{1}{\mathcal{T}_{AB}} + rac{1}{\mathcal{T}_{AC} + \mathcal{T}_{CB}},$$

where

$$\mathcal{T}_{AB} = \inf_{\Phi \in \Pi(s_{AB})} \int \left| \int_0^1 \dot{\Phi}_s \circ \Phi_s^{-1} \left| \frac{\mathrm{d}\nu_s}{\mathrm{d}\mu} \right|^2 \mathrm{d}\mu.$$

 $\Pi(s_{AB})$: transport interpolations between $\mu \sqcup A$ and $\mu \sqcup B$ across s_{AB} .

	$\varepsilon = 0.15$	$\varepsilon = 0.6$
[MSVE06] TPT, flux	$9.47 imes10^{-8}$	$1.912 imes 10^{-2}$
[MSVE06] TPT, commitor	$9.22 imes10^{-8}$	$1.924 imes10^{-2}$
transport, numerical Z_{μ}	$9.33 imes10^{-8}$	$1.926 imes10^{-2}$

• Overdamped Langevin dynamics at low temperature

- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - good local mixing
 Lyapunov technique handles non-convex situations
 - sharp estimates of mean-difference
 transport representation of A⁻¹-norm and optimization
- Relation to electrical networks to estimate reaction rates

- Overdamped Langevin dynamics at low temperature
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - good local mixing
 Lyapunov technique handles non-convex situations
 - sharp estimates of mean-difference
 transport representation of A⁻¹-norm and optimization
- Relation to electrical networks to estimate reaction rates

- Overdamped Langevin dynamics at low temperature
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - ► good local mixing ⇒ Lyapunov technique handles non-convex situations
 - ► sharp estimates of mean-difference ⇒ transport representation of H⁻¹-norm and optimization
- Relation to electrical networks to estimate reaction rates

- Overdamped Langevin dynamics at low temperature
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - good local mixing

 \Rightarrow Lyapunov technique handles non-convex situations

- ► sharp estimates of mean-difference ⇒ transport representation of H⁻¹-norm and optimization
- Relation to electrical networks to estimate reaction rates

- Overdamped Langevin dynamics at low temperature
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - good local mixing
 - \Rightarrow Lyapunov technique handles non-convex situations
 - sharp estimates of mean-difference
 ⇒ transport representation of H⁻¹-norm and optimization

• Relation to electrical networks to estimate reaction rates

- Overdamped Langevin dynamics at low temperature
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - *good* local mixing
 ⇒ Lyapunov technique handles non-convex situations
 - sharp estimates of mean-difference
 ⇒ transport representation of H⁻¹-norm and optimization

• Relation to electrical networks to estimate reaction rates

- Overdamped Langevin dynamics at low temperature
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - *good* local mixing
 ⇒ Lyapunov technique handles non-convex situations
 - ► sharp estimates of mean-difference \Rightarrow transport representation of H^{-1} -norm and optimization
- Relation to electrical networks to estimate reaction rates

- Overdamped Langevin dynamics at low temperature
- Partitions and splitting induced from dynamic (two scales)
- Optimal constants in PI and LSI follow from two ingredients:
 - *good* local mixing
 ⇒ Lyapunov technique handles non-convex situations
 - ► sharp estimates of mean-difference \Rightarrow transport representation of H^{-1} -norm and optimization
- Relation to electrical networks to estimate reaction rates