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Introduction
Overdamped Langevin dynamics

Hamiltonian H : Rn ! R energy landscape

Dynamic at temperature" � 1
dXt = �r H(Xt )dt +

p
2" dWt

Fokker-Planckevolution of lawXt = %t

@t %t = r � (" r %t + %t r H)

Gibbs measure� (dx) = 1
Z�

exp
�
� H

"

�
dx,

where Z� =
R

e� H
" dx

Generatorevolution offt = %t =�
@t ft = Lft := " � ft � r H � r ft :

Dirichlet form E(f ) :=
R

(� Lf )f d�
= "

R
jr f j2 d�:
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Distance and convergence to equilibrium
Quanti�cation via functional inequalities

f � const. is equilibrium state

for a strictly convexfunction � : R ! R [ f + 1g de�ne

�( f ) :=
Z

� � f d� � �
� Z

f d�
�

:

evaluate �( ft ) along solution@ft = Lft

d
dt

�( ft ) =
Z

� 0� f @t ft|{z}
= Lf t

d� = � "
Z

� 00� f
| {z }

> 0

jr ft j
2 d�:

If FI(� ), then
�( ft ) � �( f0)e� 2"� t :
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Poincar�e and logarithmic Sobolev inequality

De�nition
� satis�es thePoincar�e inequality PI(%) if 8f : Rn ! R

var� (f ) :=
Z

f 2 �
� Z

f d�
� 2

d� �
1
%

Z
jr f j2 d�: PI(%)

and thelogarithmic Sobolev inequality LSI(� ) if 8f : Rn ! R

Ent� (f ) :=
Z

f log
fR
f d�

d� �
1
�

Z
jr f j2

2f
d�: LSI(� )

PI(%) and LSI(� ) imply exponential convergenceto � :

PI(%) ) var� (ft ) � var� (f0)e� 2%"t

LSI(� ) ) Ent� (ft ) � Ent� (f0)e� 2�" t :

LSI(� ) implies PI(� ) ) %� �
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Goal

Accurate estimates of%and � in the regime" � 1:

%= C%e� � H
" (1 + o(1)) and � = C� e� � H

" (1 + o(1)) :
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Heuristics
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Heuristics

Figure : Trajectory for " = 0 :4
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Heuristics

Figure : Trajectory for " = 0 :2
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Heuristics

Figure : Trajectory for " = 0 :1
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Heuristics

Figure : Trajectory for " = 0 :05 (red " = 0)
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Partitions

Make use of the two scale in dynamics by decomposition [GOVW09]

Basins of attraction
 0 ] 
 1 = Rn of local minimam0; m1:


 i := f y0 2 Rn : _yt = �r H(yt ); yt ! mi g:


 0 
 1

m0 m1s0;1

Restricted measures� 0; � 1:

� i := � x
 i ; i = 0 ; 1:

Mixture representation

� = Z0� 0 + Z1� 1; Zi := � (
 i ):
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Splitting

Lemma

var� (f ) = Z0 var� 0(f ) + Z1 var� 1(f )
| {z }

local variances

+ Z0Z1 (E � 0(f ) � E � 1(f ))2

| {z }
mean-di�erence

Ent� (f 2) �

local entropies
z }| {
Z0 Ent� 0(f

2) + Z1 Ent� 1(f
2)

+
Z0Z1

�( Z0; Z1)

�
var� 0(f ) + var � 1(f ) + ( E � 0(f ) � E � 1(f ))2

�
;

where�( Z0; Z1) = Z0� Z1
log Z0� log Z1

is the logarithmic mean.

Expect from heuristics:

goodestimate for local variances/entropies

exponentialestimate for mean-di�erence
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Main results

Theorem (Local PI and LSI)

The measures� 0 and � 1 satisfyPI(%loc) and LSI(� loc) with

%� 1
loc = O(") and � � 1

loc = O(1):

PI is as good as for convex potential

Non-convexity of potential worsens LSI

Both results scale optimal in one dimension

Theorem (Mean-di�erence estimate)

(E � 0f � E � 1f )2 .
Z�

(2�" )
n
2

2�"
p

jdetr 2H(s0;1)j
j� � (r 2H(s0;1)) j

e" � 1H(s0;1)
Z

jr f j2 d�:

\ . ": up to multiplicative error1 + o(1) as " ! 0.
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Eyring-Kramers formula
New proof to [BEGK04/05] for PI and extension to LSI:

Corollary
The measure� satis�es PI(%) and LSI(� ) with

1
%

� Z0Z1
Z�

(2�" )
n
2

2�"
p

jdetr 2H(s0;1)j
j� � (r 2H(s0;1)) j

e
H(s0;1)

" and
2
�

.
1

�( Z0; Z1) %
:

Asymptotic evaluation of the factor �(Z0; Z1) for two special cases:

H(m0) < H(m1) : 1 �
%
�

. O(" � 1)

H(m0) = H(m1) : 1 �
%
�

.
� 0+ � 1

2

�( � 0; � 1)
= O(1);

where� i :=
q

detr 2H(mi ):
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H(m0) < H(m1) : 1 �
%
�

. O(" � 1)

H(m0) = H(m1) : 1 �
%
�

.
� 0+ � 1

2

�( � 0; � 1)
= O(1);

where� i :=
q

detr 2H(mi ):
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Sketch of the Proofs

Theorem (Local PI and LSI)
A measures� coming from a basin of attraction
 of a potential H
satis�es PI(%loc) and LSI(� loc) with

%� 1
loc = O(") and � � 1

loc = O(1):

lack of convexity
) rules out Bakry-�Emery criterion

non-exponential behavior of constants
) rules out Holley-Stroock perturbation principle

optimality available in one dimension
) Muckenhoupt and Bobkov/G•otze functional
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Proof: Local PI and LSI
Lyapunov condition

Technique by Bakry, Barthe, Cattiaux, Guillin, Wang and Wu 2008{
Principal eigenvalue characterization forL by Donsker-Varadhan 1975

De�nition
L satis�es aLyapunov conditionwith constants�; b > 0 and some
U � Rn, if there exists a functionW : 
 ! [1; 1 ) satisfying

LW
"W

� � � + b 1U :

W is calledLyapunov functionfor L.

Theorem ([BBCG08])

Suppose L satis�es a Lyapunov condition and� xU satis�es PI(%U ), then
� satis�es PI(%) with

%�
�

b + %U
%U
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Proof: Local PI and LSI

Proof: Lyapunov) PI(%)

With the symmetry of" � 1(� L) in L2(� ) follows
Z

f 2 (� LW )
"W

d� =
Z �

r
f 2

W
; r W

�
d�

= 2
Z

f
W

hr f ; r W i d� �
Z

f 2 jr W j2

W 2 d�

=
Z

jr f j2 d� �
Z �

�
�
�r f �

f
W

r W

�
�
�
�

2

d�:

The Lyapunov conditions ensures 1� � LW
�" W + b

� 1U :

var� (f ) =
Z

(f � �f )2d�
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Proof: Local PI and LSI
Lyapunov function

Task: Find a functionW : 
 ! [1; 1 ) such that

LW
W

� � � + b 1Ba
p

" (m) :

AnsatzW = exp
�

~H
2"

�
, where ~H is an"-perturbation ofH

~LW
W

=
1
2

� ~H �
1
4"

jr ~Hj2
!
� � �:

I if x is
p

"-away from critical points:" � 1jr ~H(x)j2 � 4�
I if x is

p
"-nearby a critical point of indexk � 1

� ~H(x) = ~� �
1 + � � � + ~� �

k| {z }
< 0

+ ~� +
k+1 + � � � + ~� +

n| {z }
> 0

+ O(
p

")

Can negative eigenvalues be enforced such that� ~H(x) � � 2� ?
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Proof: Local PI and LSI
Construction of Lyapunov function

Figure : H around a saddle point

~H is quadratic perturbation ofH in
p

"-neighborhoods of critical points:

sup
x

�
�
�H(x) � ~H(x)

�
�
� = O("):
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Proof: Mean-di�erence estimate

Goal: Find a good estimate forC in

(E � 0(f ) � E � 1(f ))2 � C
Z

jr f j2 d�:
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Proof: Mean-di�erence estimate
Approximation step

Goal: Find a good estimate forC in

(E � 0(f ) � E � 1(f ))2 � C
Z

jr f j2 d�:

Step 1: Approximate� 0 and � 1 by truncated Gaussians� 0 and � 1:

� i � N (mi ; " � i )xBp
" (mi ) with � � 1

i := r 2H(mi ):

Introduce� 0 and � 1 as coupling:

(E � 0f � E � 1f )2 � (1 + � ) (E � 0f � E � 1f )2

| {z }
transport argument

+ 2(1 + � � 1)
X

i = f 0;1g

(E � i f � E � i f )2

| {z }
approximation bound

Approximation
bound follows from local PI and local LSI.
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Proof: Mean-di�erence estimate
Transport interpolation

Goal: Find a good estimate forC in

(E � 0(f ) � E � 1(f ))2 � C
Z

jr f j2 d�:

Step 2: Transport (� s : Rn ! Rn)s2 [0;1] interpolating (� s)] � 0 = � s
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� Z
f d� 0 �

Z
f d� 1

� 2

=
� Z Z 1

0

d
ds

(f � � s) ds d� 0

� 2
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Proof: Mean-di�erence estimate
Sideremark: Weighted transport distance

De�nition
For � 0; � 1 � � de�ne the weighted transport distanceby

T 2
� (� 0; � 1) = inf

f � sg

Z �
�
�
�

Z 1

0

_� s � � � 1
s

d� s

d�
ds

�
�
�
�

2

d�:

(� s)s2 [0;1] is absolutely continuous ins: (� s)] � 0 = � s.

Mean-di�erence revisited: Identify
R

jr f j2 d� = kf k2
_H1(� ) , then

� Z
f d� 0 �

Z
f d� 1

� 2

=
�

_H � 1(� )h� 0 � � 1; f i _H1(� )

� 2

� T 2
� (� 0; � 1) kf k2

_H1(� ) :

Indeed, it holds:T 2
� (� 0; � 1) = k� 0 � � 1k2

_H � 1(� ) .
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Proof: Mean-di�erence estimate
Construction of transport interpolation

Step 3: Ansatz � s such that � s = (� s)] � 0 = N ( s; � s)xBp
" ( s)

(1) optimize  ) passage of saddle � � = s0;1

(2) optimize _ � � ) direction of eigenvector to� � (r 2H(s0;1))
(3) optimize � � � ) � � 1

� � = r 2H(s0;1) on stable manifold ofs0;1


 0 
 1

� 0 � 1
s0;1



� s
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Summary

Functional inequalities quantify convergence to equilibrium

Partitions and splitting induced from dynamic (two scales)

Eyring-Kramers formula follows from two ingredients:

I good local mixing
) Lyapunov technique handles non-convex situations

I sharpestimates of mean-di�erence
) transport representation ofH � 1-norm and optimization
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