Diffusion processes, electrical networks and entropic switching

André Schlichting

Institute for Applied Mathematics, University of Bonn

5th Spring School on Evolution Equations

March, 2013

Overdamped Langevin dynamics in a 3 hole potential

Hamiltonian $H : \mathbb{R}^2 \to \mathbb{R}$ specific potential:

Dynamic at temperature $\varepsilon > 0$ small $dX_t = -\nabla H(X_t) dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp(-\varepsilon^{-1}H) dx$$
,
 Z_{μ} partition sum

Generator evolution of density $f_t = \varrho_t/\mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$

Features

two global minima a, b
additional local minimum c
saddle points s_{a,b}, s_{a,c}, s_{c,b}

degenerated
$$|H(s_{a,b}) - H(s_{a,c})| = \delta$$
 small

André Schlichting (IAM Bonn)

Overdamped Langevin dynamics in a 3 hole potential

Hamiltonian $H : \mathbb{R}^2 \to \mathbb{R}$ specific potential: Dynamic at temperature $\varepsilon > 0$ small $dX_t = -\nabla H(X_t)dt + \sqrt{2\varepsilon} dW_t$ Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$ Sibbs measure $\mu(dx) = \frac{1}{Z_{\mu}} \exp(-\varepsilon^{-1}H) dx$, Z_{μ} partition sum

Generator evolution of density $f_t = \rho_t/\mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$

- Features
 two global minima a, b
 additional local minimum c
 - saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

degenerated $|H(s_{a,b}) - H(s_{a,c})| = \delta$ small

2.0

Overdamped Langevin dynamics in a 3 hole potential

Hamiltonian $H : \mathbb{R}^2 \to \mathbb{R}$ specific potential:

Dynamic at temperature $\varepsilon > 0$ small $dX_t = -\nabla H(X_t)dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(\mathrm{d} x) = rac{1}{Z_\mu}\exp\left(-arepsilon^{-1}H
ight)\mathrm{d} x,$$

 Z_μ partition sum

Generator evolution of density $f_t = \varrho_t/\mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$

Features • two global minima *a*, *b* • additional local minimum *c*

• saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

Overdamped Langevin dynamics in a 3 hole potential

Hamiltonian $H : \mathbb{R}^2 \to \mathbb{R}$ specific potential:

Dynamic at temperature $\varepsilon > 0$ small $dX_t = -\nabla H(X_t)dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp(-\varepsilon^{-1}H) dx$$
,
 Z_{μ} partition sum

Generator evolution of density $f_t = \varrho_t / \mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$

- Features two global minima *a*, *b*
 - additional local minimum *c*
 - saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

Overdamped Langevin dynamics in a 3 hole potential

Hamiltonian $H : \mathbb{R}^2 \to \mathbb{R}$ specific potential:

Dynamic at temperature $\varepsilon > 0$ small $dX_t = -\nabla H(X_t)dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp(-\varepsilon^{-1}H) dx$$
,
 Z_{μ} partition sum

Generator evolution of density $f_t = \varrho_t/\mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$

Features
two global minima a, b
additional local minimum c

• saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

Overdamped Langevin dynamics in a 3 hole potential

Hamiltonian $H : \mathbb{R}^2 \to \mathbb{R}$ specific potential:

Dynamic at temperature $\varepsilon > 0$ small $dX_t = -\nabla H(X_t)dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp(-\varepsilon^{-1}H) dx$$
,
 Z_{μ} partition sum

Generator evolution of density $f_t = \varrho_t/\mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$

Features • two global minima *a*, *b*

- additional local minimum c
- saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$

degenerated $|H(s_{a,b}) - H(s_{a,c})| = \delta$ small

André Schlichting (IAM Bonn)

Overdamped Langevin dynamics in a 3 hole potential

Hamiltonian $H : \mathbb{R}^2 \to \mathbb{R}$ specific potential:

Dynamic at temperature $\varepsilon > 0$ small $dX_t = -\nabla H(X_t)dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp(-\varepsilon^{-1}H) dx$$
,
 Z_{μ} partition sum

Generator evolution of density $f_t = \varrho_t / \mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$

Features
two global minima a, b
additional local minimum c
saddle points s_{a,b}, s_{a,c}, s_{c,b}

Overdamped Langevin dynamics in a 3 hole potential

Hamiltonian $H : \mathbb{R}^2 \to \mathbb{R}$ specific potential:

Dynamic at temperature $\varepsilon > 0$ small $dX_t = -\nabla H(X_t)dt + \sqrt{2\varepsilon} dW_t$

Fokker-Planck evolution of law $X_t = \varrho_t$ $\partial_t \varrho_t = \nabla \cdot (\varepsilon \nabla \varrho_t + \varrho_t \nabla H)$

Gibbs measure
$$\mu(dx) = \frac{1}{Z_{\mu}} \exp(-\varepsilon^{-1}H) dx$$
,
 Z_{μ} partition sum

Generator evolution of density $f_t = \varrho_t / \mu$ $\partial_t f_t = L f_t := \varepsilon \Delta f_t - \nabla H \cdot \nabla f_t.$

Features • two global minima a, b• additional local minimum c• saddle points $s_{a,b}$, $s_{a,c}$, $s_{c,b}$ degenerated $|H(s_{a,b}) - H(s_{a,c})| = \delta$ small

two small parameters: ε and δ

Fluxes and reaction rates

Interpretation as chemical reactions

•
$$A = \{|x - a| \le r\}$$
 reactant

•
$$B = \{|x - a| \le r\}$$
 product

• $C = \{|x - a| \le r\}$ intermediate product

What are typical reaction rates and paths?

How to define the reaction rate?

Steady state with inflow of reactants and outflow of products:

 $Lh_{A,B} = 0$ in $(A \cup B)^c$ and $h_{A,B} = \mathbb{1}_A$ in $A \cup B$.

Definition (Reaction rate)

$$k_{A,B} := \varepsilon \int |J_{A,B}|^2 \,\mathrm{d}\mu = \varepsilon \int |\nabla h_{A,B}|^2 \,\mathrm{d}\mu.$$

Fluxes and reaction rates

Interpretation as chemical reactions

•
$$A = \{|x - a| \le r\}$$
 reactant

•
$$B = \{|x - a| \le r\}$$
 product

• $C = \{|x - a| \le r\}$ intermediate product

What are typical reaction rates and paths?

How to define the reaction rate?

Steady state with inflow of reactants and outflow of products:

$$Lh_{A,B} = 0$$
 in $(A \cup B)^c$ and $h_{A,B} = \mathbb{1}_A$ in $A \cup B$.

Definition (Reaction rate)

$$k_{A,B} := \varepsilon \int |J_{A,B}|^2 d\mu = \varepsilon \int |\nabla h_{A,B}|^2 d\mu.$$

Fluxes and reaction rates

Interpretation as chemical reactions

•
$$A = \{|x - a| \le r\}$$
 reactant

•
$$B = \{|x - a| \le r\}$$
 product

• $C = \{|x - a| \le r\}$ intermediate product

What are typical reaction rates and paths?

How to define the reaction rate?

Steady state with inflow of reactants and outflow of products:

$$Lh_{A,B} = 0$$
 in $(A \cup B)^c$ and $h_{A,B} = \mathbb{1}_A$ in $A \cup B$.

Definition (Reaction rate)

$$k_{A,B} := \varepsilon \int |J_{A,B}|^2 \,\mathrm{d}\mu = \varepsilon \int |\nabla h_{A,B}|^2 \,\mathrm{d}\mu.$$

Entropic switching

Numerics: P. Metzner, C. Schütte and E. Vanden-Eijnden 2006 [MSE06]

Very low temperature regime analytical accessible via:

- Large deviations (Freidlin-Wentzell)
- Metastability/Potential theory (Bovier, Eckhoff, Garyard, Klein)
- Semiclassical analysis (Helffer, Klein, Nier)

Entropic switching

Numerics: P. Metzner, C. Schütte and E. Vanden-Eijnden 2006 [MSE06]

Very low temperature regime analytical accessible via:

- Large deviations (Freidlin-Wentzell)
- Metastability/Potential theory (Bovier, Eckhoff, Garyard, Klein)
- Semiclassical analysis (Helffer, Klein, Nier)

series and parallel law

• minima become nodes

- saddles become resistors
- boundary condition becomes voltage source

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

- minima become nodes
- saddles become resistors
- boundary condition becomes voltage source

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

- minima become nodes
- saddles become resistors
- boundary condition becomes voltage source

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

٠

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}}$$

series and parallel law

series and parallel law

$$\frac{1}{R} = \frac{1}{R_{AB}} + \frac{1}{R_{AC} + R_{CB}} \stackrel{\text{Ohm}}{=} k_{AB}.$$

Result

An analytical formula for the reaction rate

Theorem

The reaction rate $k_{A,B}$ (conductance) is given by

$$k_{A,B} = \varepsilon \left(\frac{1}{R_{A,B}} + \frac{1}{R_{A,C} + R_{C,B}} \right) (1 + o(1)),$$

where

$$R_{A,B} = Z_{\mu} \frac{\sqrt{|\det \nabla^2 H(s_{a,b})|}}{|\lambda^- (\nabla^2 H(s_{a,b}))|} e^{\varepsilon^{-1} H(s_{a,b})}$$
$$R_{A,C} = Z_{\mu} \frac{\sqrt{|\det \nabla^2 H(s_{a,c})|}}{|\lambda^- (\nabla^2 H(s_{a,c}))|} e^{\varepsilon^{-1} H(s_{a,c})}$$
$$R_{C,B} = Z_{\mu} \frac{\sqrt{|\det \nabla^2 H(s_{c,b})|}}{|\lambda^- (\nabla^2 H(s_{c,b}))|} e^{\varepsilon^{-1} H(s_{c,b})}$$

Comparison with numerics

Analytical expansion of Z_{μ}

$$Z_{\mu} = 2\left(\frac{2\pi\varepsilon}{\sqrt{\det\nabla^{2}H(a)}} + O(\varepsilon^{\frac{3}{2}})\right)e^{-\varepsilon^{-1}H(a)} + O\left(e^{-\varepsilon^{-1}(H(c))-H(a))}\right)$$

	$\varepsilon^{-1} = 6.67$	$\varepsilon^{-1} = 1.67$
[MSE06] TPT, flux	$9.47 imes10^{-8}$	$1.912 imes10^{-2}$
[MSE06] TPT, commitor	$9.22 imes10^{-8}$	$1.924 imes10^{-2}$
[MSE06] finite difference		$(1.918\pm 0.052) imes 10^{-2}$
Theorem, analytical Z_{μ}	$9.63 imes10^{-8}$	$2.373 imes10^{-2}$
Theorem, numerical Z_{μ}	$9.33 imes10^{-8}$	$1.926 imes 10^{-2}$

Upto numerical integration, the Theorem provides exact analytical results.

Comparison with numerics

Analytical expansion of Z_{μ}

$$Z_{\mu} = 2\left(\frac{2\pi\varepsilon}{\sqrt{\det\nabla^{2}H(a)}} + O(\varepsilon^{\frac{3}{2}})\right)e^{-\varepsilon^{-1}H(a)} + O\left(e^{-\varepsilon^{-1}(H(c))-H(a))}\right)$$

	$e^{-1} = 6.67$	$\varepsilon^{-1} = 1.67$
[MSE06] TPT, flux	$9.47 imes10^{-8}$	$1.912 imes 10^{-2}$
[MSE06] TPT, commitor	$9.22 imes10^{-8}$	$1.924 imes10^{-2}$
[MSE06] finite difference		$(1.918 \pm 0.052) imes 10^{-2}$
Theorem, analytical Z_{μ}	$9.63 imes10^{-8}$	$2.373 imes 10^{-2}$
Theorem, numerical Z_{μ}	$9.33 imes10^{-8}$	$1.926 imes10^{-2}$

Upto numerical integration, the Theorem provides exact analytical results.

Comparison with numerics

Analytical expansion of Z_{μ}

$$Z_{\mu} = 2\left(\frac{2\pi\varepsilon}{\sqrt{\det\nabla^{2}H(a)}} + O(\varepsilon^{\frac{3}{2}})\right)e^{-\varepsilon^{-1}H(a)} + O\left(e^{-\varepsilon^{-1}(H(c)) - H(a))}\right)$$

	$e^{-1} = 6.67$	$\varepsilon^{-1} = 1.67$
[MSE06] TPT, flux	$9.47 imes10^{-8}$	$1.912 imes 10^{-2}$
[MSE06] TPT, commitor	$9.22 imes10^{-8}$	$1.924 imes10^{-2}$
[MSE06] finite difference		$(1.918 \pm 0.052) imes 10^{-2}$
Theorem, analytical Z_{μ}	$9.63 imes10^{-8}$	$2.373 imes 10^{-2}$
Theorem, numerical $\dot{Z_{\mu}}$	$9.33 imes10^{-8}$	$1.926 imes10^{-2}$

Upto numerical integration, the Theorem provides exact analytical results.

Variational formulation of reaction rates

Theorem

The reaction rate $k_{A,B}$ has the following variational representation

$$k_{A,B} = \varepsilon \sup_{\varrho_{A} \in \mathcal{P}_{\mu}(A), \varrho_{B} \in \mathcal{P}_{\mu}(B)} \frac{1}{\left\| \varrho_{A} - \varrho_{B} \right\|_{\dot{H}^{-1}(\mu)}^{2}}$$

Hereby $\mathcal{P}_{\mu}(S)$ are probability measures on $S \subset \mathbb{R}^n$, i.e.

$$\mathcal{P}_{\mu}(\mathcal{S}) \mathrel{\mathop:}= \left\{ arrho \in \dot{\mathcal{H}}^{-1}(\mathcal{S};\mu) : arrho \geq \mathsf{0}, \int_{\mathcal{S}} arrho \; \mathsf{d}\mu = 1
ight\}.$$

 $\dot{H}^{-1}(\mu)$ is dual of $\dot{H}^{1}(\mu)$, i.e. for ϱ with $\int \varrho \ d\mu = 0$ holds

$$\|\varrho\|_{\dot{H}^{-1}(\mu)} := \sup_{f \in \dot{H}^{1}(\mu)} \left\{ \frac{|\langle f, \varrho \rangle_{\mu}|^{2}}{\|f\|_{\dot{H}^{1}(\mu)}^{2}} \right\}, \quad \text{where} \quad \|f\|_{\dot{H}^{1}(\mu)}^{2} = \int |\nabla f|^{2} \, \mathrm{d}\mu.$$

Lemma

Assume $\rho_A, \rho_B \ll \mu$, then it holds

$$\|\varrho_A - \varrho_B\|_{\dot{H}^{-1}(\mu)} = \mathcal{T}_{\mu}(\varrho_A \mu, \varrho_B \mu).$$

For two probability measures ν_A and ν_B , $\mathcal{T}_{\mu}(\nu_A, \nu_B)$ is defined by

$$\mathcal{T}^{2}_{\mu}(\nu_{A},\nu_{B}) = \inf_{\Phi \in \Pi(\nu_{A},\nu_{B})} \int \left| \int_{0}^{1} \dot{\Phi}_{s} \circ \Phi_{s}^{-1} \left| \frac{\mathrm{d}\nu_{s}}{\mathrm{d}\mu} \right|^{2} \mathrm{d}\mu,$$

where ν_s is the push-forward of ν_A under Φ_s denoted by $\Phi_s \sharp \nu_A = \nu_s$. The infimum is taken over

$$\Pi(\nu_A,\nu_B) := \{ \Phi \in \mathsf{AC}([0,1],\mathsf{Diff}(\mathbb{R}^n,\mathbb{R}^n)) : \Phi_0 = \mathsf{Id}, \Phi_1 \sharp \nu_A = \nu_B \}.$$

Series and parallel law for transport cost

$$rac{1}{\mathcal{T}^2_\mu(
u_A,
u_B)} = \left(rac{1}{\mathcal{T}^2_{A,B}} + rac{1}{\mathcal{T}^2_{A,C} + \mathcal{T}^2_{B,C}}
ight)(1+o(1)).$$

 $T_{A,B}, T_{A,C}, T_{C,B}$ are support restricted transport costs.

Support restricted transport costs:

- Level set $\{H(x) \leq H(s^*)\}$
 - \Rightarrow 3 connected components: $\Omega_a, \Omega_b, \Omega_c$
- $B_{a,b}, B_{a,c}, B_{c,b} \sqrt{\delta}$ -balls around saddles
- transport interpolations of *T_{A,B}* supported on Ω_a ∪ B_{a,b} ∪ Ω_b
- likewise T_{A,C}, T_{C,B}.

Series and parallel law for transport cost

$$\frac{1}{\mathcal{T}_{\mu}^{2}(\nu_{A},\nu_{B})} = \left(\frac{1}{\mathcal{T}_{A,B}^{2}} + \frac{1}{\mathcal{T}_{A,C}^{2} + \mathcal{T}_{B,C}^{2}}\right)(1 + o(1)).$$

 $T_{A,B}, T_{A,C}, T_{C,B}$ are support restricted transport costs.

Support restricted transport costs:

- Level set {H(x) ≤ H(s*)}
 ⇒ 3 connected components: Ω_a, Ω_b, Ω_c
- $B_{a,b}, B_{a,c}, B_{c,b} \sqrt{\delta}$ -balls around saddles
- transport interpolations of $T_{A,B}$ supported on $\Omega_a \cup B_{a,b} \cup \Omega_b$

• likewise $T_{A,C}$, $T_{C,B}$.

Series and parallel law for transport cost

$$\frac{1}{\mathcal{T}_{\mu}^{2}(\nu_{A},\nu_{B})} = \left(\frac{1}{\mathcal{T}_{A,B}^{2}} + \frac{1}{\mathcal{T}_{A,C}^{2} + \mathcal{T}_{B,C}^{2}}\right)(1 + o(1)).$$

 $T_{A,B}, T_{A,C}, T_{C,B}$ are support restricted transport costs.

Support restricted transport costs:

- Level set {H(x) ≤ H(s*)}
 ⇒ 3 connected components: Ω_a, Ω_b, Ω_c
- $B_{a,b}, B_{a,c}, B_{c,b} \sqrt{\delta}$ -balls around saddles
- transport interpolations of $T_{A,B}$ supported on $\Omega_a \cup B_{a,b} \cup \Omega_b$

• likewise $T_{A,C}$, $T_{C,B}$.

Series and parallel law for transport cost

$$\frac{1}{\mathcal{T}_{\mu}^{2}(\nu_{A},\nu_{B})} = \left(\frac{1}{\mathcal{T}_{A,B}^{2}} + \frac{1}{\mathcal{T}_{A,C}^{2} + \mathcal{T}_{B,C}^{2}}\right)(1 + o(1)).$$

 $T_{A,B}, T_{A,C}, T_{C,B}$ are support restricted transport costs.

Support restricted transport costs:

- Level set {H(x) ≤ H(s*)}
 ⇒ 3 connected components: Ω_a, Ω_b, Ω_c
- $B_{a,b}, B_{a,c}, B_{c,b} \sqrt{\delta}$ -balls around saddles
- transport interpolations of $T_{A,B}$ supported on $\Omega_a \cup B_{a,b} \cup \Omega_b$

• likewise $T_{A,C}$, $T_{C,B}$.

Series and parallel law for transport cost

$$\frac{1}{\mathcal{T}_{\mu}^{2}(\nu_{A},\nu_{B})} = \left(\frac{1}{\mathcal{T}_{A,B}^{2}} + \frac{1}{\mathcal{T}_{A,C}^{2} + \mathcal{T}_{B,C}^{2}}\right)(1 + o(1)).$$

 $T_{A,B}, T_{A,C}, T_{C,B}$ are support restricted transport costs.

Support restricted transport costs:

- Level set {H(x) ≤ H(s*)}
 ⇒ 3 connected components: Ω_a, Ω_b, Ω_c
- $B_{a,b}, B_{a,c}, B_{c,b} \sqrt{\delta}$ -balls around saddles
- transport interpolations of $T_{A,B}$ supported on $\Omega_a \cup B_{a,b} \cup \Omega_b$
- likewise $T_{A,C}$, $T_{C,B}$.

Series and parallel law for transport cost

$$\frac{1}{\mathcal{T}_{\mu}^{2}(\nu_{A},\nu_{B})} = \left(\frac{1}{\mathcal{T}_{A,B}^{2}} + \frac{1}{\mathcal{T}_{A,C}^{2} + \mathcal{T}_{B,C}^{2}}\right)(1 + o(1)).$$

 $T_{A,B}, T_{A,C}, T_{C,B}$ are support restricted transport costs.

Support restricted transport costs:

- Level set {H(x) ≤ H(s*)}
 ⇒ 3 connected components: Ω_a, Ω_b, Ω_c
- $B_{a,b}, B_{a,c}, B_{c,b} \sqrt{\delta}$ -balls around saddles
- transport interpolations of $T_{A,B}$ supported on $\Omega_a \cup B_{a,b} \cup \Omega_b$
- likewise $T_{A,C}$, $T_{C,B}$.

Single transport costs are equal to resistances

$$\begin{split} T^{2}_{A,B}(1+o(1)) &= R_{A,B} = Z_{\mu} \frac{\sqrt{|\det \nabla^{2} H(s_{a,b})|}}{|\lambda^{-}(\nabla^{2} H(s_{a,c}))|} e^{\varepsilon^{-1} H(s_{a,b})} \\ T^{2}_{A,C}(1+o(1)) &= R_{A,C} = Z_{\mu} \frac{\sqrt{|\det \nabla^{2} H(s_{a,c})|}}{|\lambda^{-}(\nabla^{2} H(s_{a,c}))|} e^{\varepsilon^{-1} H(s_{a,c})} \\ T^{2}_{B,C}(1+o(1)) &= R_{C,B} = Z_{\mu} \frac{\sqrt{|\det \nabla^{2} H(s_{c,b})|}}{|\lambda^{-}(\nabla^{2} H(s_{c,b}))|} e^{\varepsilon^{-1} H(s_{c,b})}. \end{split}$$