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The seminar concerns the long time behavior of dissipative PDEs. In physics, one generally

thinks of dissipativity as a dissipation of some “energy” associated with the system. Mathe-

matically speaking this energy E acts as a Lyapunov function of the dynamic and it is often

possible to derive a Gronwall type inequality of the form dE/dt < —®(E) from which one

can deduce the long time asymptotic.

1)

Energy-energy-dissipation (EED) principle for the Fokker-Planck equation of a particle
density f(t,v) witht € R, and v € R?

Of =Aof +V, - (fo).
Trend to equilibrium via entropy dissipation: Survey and overview [MV99]
a) Decay to the thermal equilibrium state [AMTU02, Section 2]
b) Sobolev inequalities and its consequences [AMTU02, Section 3]
c) Logarithmic-Sobolev inequalities and hypercontractivity [G75, G93]

In the above analysis, a crucial observation consists in rewriting the equation as 0, f =
A*Af with A = V,, and the adjoint wrt. to a weighted L? inner product. In the next part
of the seminar, we want to extend this to operators of Hormander type and f now solves
an equation of the form 0;f = A*A + B, where B is antisymmetric B* = —B. A first
example is the kinetic Fokker-Planck equation for a particle density f(¢,x,v)

Of +v-Vif —VV(x) - Vof = Aof + Vo - (f0).

Hereby, the function V : R — R is a potential ensuring the existence of a equilibrium of
finite total density. The equation is kinetic in the sense, that it involves not only position
x € Q C R but also velocity variables v € R?. The equation is the prototype of the
so called hypocoercive phenomenon: The differential operator of the rhs. is degenerate
diffusive (only in v) of the form A*A and the left hand side is conservative satisfying
B* = —B at it describes the trajectories of a classical Hamiltonian dynamical system for
the Hamiltonian H(x,v) = V(x) + |v|*/2. The Hamiltonian also defines the stationary
state fo(x,v) = exp(—H(x,v)).



a)

b)

e)
)

A refined energy—energy-dissipation principle is still possible if V' = 0 on a bounded
domain Q to show exponential convergence to equilibrium [CT98]

In general by using a local equilibrium it is possible to establish a system of differ-
ential inequalities providing the convergence to equilibrium. A crucial ingredient
is the use of local equilibrium defined with the help of the Maxwellian M(v) =
exp(—|v|®/2) and density o(x) = [ f(t,x,v) dv by pM. The crucial functional is the
relative entropy, defined for two densities f,g by H(flg) = [[ flog 5 dx dv, which
allows the additive splitting H(f|fw) = H(f|loM) + Hy(ole™").

Heuristics, second derivative of the entropy and system of differential equations
[DVO01, Section 1-3,6]

Nonlinear interpolations and uniform in time hypoelliptic estimates [DV01, Section
4,5]

A systematic abstract study exploiting the necessary conditions on the operators A
and B from the Hormander form L = A*A + B is then investigated [V07, Review]
and [V09, Section 1.1-4].

and can be applied to the Fokker-Planck equation [V09, Section 1.6-7]

A concise slightly different approach is discussed in [AS16, DMS15].

3) The main motivation of the above analysis is the proof of the trend to equilibrium of the

inhomogeneous Boltzmann equation for a particle density f(t,x,v)

hf+v-Vef =0(f. 1)

Here Q(f, f) is the Boltzmann collision operator modeling elastic collision of small par-

ticles in a gas. The above program can be implemented as follows

First, we will investigate the dissipative structure of the homogeneous equation

0 f = Q(f. f) [CC92, CCI3]

and prove therewith the convergence to equilibrium [TV99]

. Trend to equilibrium of the inhomogeneous equation [DV05, V08].
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