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The seminar concerns the long time behavior of dissipative PDEs. In physics, one generally
thinks of dissipativity as a dissipation of some “energy” associated with the system. Mathe-
matically speaking this energy E acts as a Lyapunov function of the dynamic and it is often
possible to derive a Gronwall type inequality of the form dE/dt ≤ −Φ(E) from which one
can deduce the long time asymptotic.

1) Energy–energy-dissipation (EED) principle for the Fokker-Planck equation of a particle
density f (t ,v ) with t ∈ R+ and v ∈ Rd

∂t f = ∆v f + ∇v · ( f v ).

Trend to equilibrium via entropy dissipation: Survey and overview [MV99]

a) Decay to the thermal equilibrium state [AMTU02, Section 2]

b) Sobolev inequalities and its consequences [AMTU02, Section 3]

c) Logarithmic-Sobolev inequalities and hypercontractivity [G75, G93]

2) In the above analysis, a crucial observation consists in rewriting the equation as ∂t f =
A∗Af with A = ∇v and the adjoint wrt. to a weighted L2 inner product. In the next part
of the seminar, we want to extend this to operators of Hörmander type and f now solves
an equation of the form ∂t f = A∗A + B, where B is antisymmetric B∗ = −B. A �rst
example is the kinetic Fokker-Planck equation for a particle density f (t ,x ,v )

∂t f +v · ∇x f − ∇V (x ) · ∇v f = ∆v f + ∇v · ( f v ).

Hereby, the functionV : Rd → R is a potential ensuring the existence of a equilibrium of
�nite total density. The equation is kinetic in the sense, that it involves not only position
x ∈ Ω ⊆ Rd , but also velocity variables v ∈ Rd . The equation is the prototype of the
so called hypocoercive phenomenon: The di�erential operator of the rhs. is degenerate
di�usive (only in v) of the form A∗A and the left hand side is conservative satisfying
B∗ = −B at it describes the trajectories of a classical Hamiltonian dynamical system for
the Hamiltonian H (x ,v ) = V (x ) + |v |2/2. The Hamiltonian also de�nes the stationary
state f∞(x ,v ) = exp(−H (x ,v )).



a) A re�ned energy–energy-dissipation principle is still possible ifV ≡ 0 on a bounded
domain Ω to show exponential convergence to equilibrium [CT98]

b) In general by using a local equilibrium it is possible to establish a system of di�er-
ential inequalities providing the convergence to equilibrium. A crucial ingredient
is the use of local equilibrium de�ned with the help of the Maxwellian M (v ) =

exp(−|v |2/2) and density ϱ (x ) =
∫
f (t ,x ,v ) dv by ρM . The crucial functional is the

relative entropy, de�ned for two densities f ,д by H ( f |д) =
˜

f log f
д dx dv , which

allows the additive splitting H ( f | f∞) = H ( f |ϱM ) + Hx (ϱ |e
−V ).

Heuristics, second derivative of the entropy and system of di�erential equations
[DV01, Section 1-3,6]

c) Nonlinear interpolations and uniform in time hypoelliptic estimates [DV01, Section
4,5]

d) A systematic abstract study exploiting the necessary conditions on the operators A
and B from the Hörmander form L = A∗A + B is then investigated [V07, Review]
and [V09, Section I.1-4].

e) and can be applied to the Fokker-Planck equation [V09, Section I.6-7]

f) A concise slightly di�erent approach is discussed in [AS16, DMS15].

3) The main motivation of the above analysis is the proof of the trend to equilibrium of the
inhomogeneous Boltzmann equation for a particle density f (t ,x ,v )

∂t f +v · ∇x f = Q ( f , f ).

HereQ ( f , f ) is the Boltzmann collision operator modeling elastic collision of small par-
ticles in a gas. The above program can be implemented as follows

a) First, we will investigate the dissipative structure of the homogeneous equation
∂t f = Q ( f , f ) [CC92, CC93]

b) and prove therewith the convergence to equilibrium [TV99]

c)–. . . Trend to equilibrium of the inhomogeneous equation [DV05, V08].
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