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1. Thermodynamics and modeling
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Model: thermodynamic modeling of nucleation

Goal: A dynamic model of condensation/dissolution of droplets

Modeling ingredients:

� c : [0, T ]×R+ → R+ cluster volume distribution

� θ : [0, T ]→ R affinity of phase transformation (θ = 0 equilibrium)

� W : R+ → R+ bulk energy per volume ≈ 1 + x

� V : R+ → R+ surface energy per volume ≈ (1 + x)2/3

� a : R+ → R+ reactivity per volume ≈ (1 + x)α, α = 2/3

Modeling assumptions: θ is proportional to gaseous phase

total conservation of mass θ +

∫
Wc = ρ

local Gibbs distribution: cθ(x) = a(x)−1 exp(−V (x) + θ W (x))

Stationary affinity: Critical equilibrium volume density: ρs :=
∫
Wa−1e−V <∞

For ρ ∈ (−∞, ρs] let θeq(ρ) be defined by θeq +
∫
Wcθeq = ρ

For ρ > ρs set θeq(ρ) = 0.

Two regimes: ρ ≤ ρs subcritical and ρ > ρs coarsening and nucleation.
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Fokker-Planck model

Dynamic evolution of cluster size distribution relative to local Gibbs distribution

∂tc(x, t) = ∂x

(
a(x) c(x, t) ∂x log

c(x, t)

cθ(t)(x)

)
with c(x, 0) = c0(x)

cθ(x) = a(x)−1 exp(−V (x) + θW (x)) local Gibbs distribution

c(0, t) = cθ(t)(0) thermodynamic consistent

ρ = θ(t) +

∫
W (x)c(x, t) dx mass conservation

(FP)

Expanded (Itô) form

∂tc(x, t) = ∂x
(
∂x
(
a(x)c(x, t)

)
+

=:−b(x,t)︷ ︸︸ ︷
a(x)

(
V ′(x)− θ(t)W ′(x)

)
c(x, t)

)
.

Assumptions on potentials

� a(·), V (·), W (·) are C2 with uniformly bounded second derivatives.

� W (·) is increasing with W (0) > 0 and at least linear growth at∞
� infx∈R+ a(x) ≥ c0 > 0

� V ′, (log a)′ and V ′′,W ′′, (log a)′′ are dominated by W ′ and (W ′)2, respectively

� The function W
a

exp(−V ) is integrable on R+
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2. Well-posedness
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Well-posedness: Adjoint problem and weak formulation

W.l.o.g. a ≡ 1 by a change of variable x 7→
∫ x
0

dx′√
a(x′)

Adjoint problem
∂tw(x, t) + ∂xxw(x, t) + b(x, t)∂xw(x, t) = 0

w(x, T ) = w0(x)

w(0, t) = 0

(Adj)

⇒ classical solutions w ∈ C1;2
t,x (R+ ×R+) for b ∈ C0;2

t,x (R+ ×R+).

Testing and integrating (FP) by w yields formulation for measure valued solutions.

Definition (weak formulation)

The pair (c, θ) with c(t, ·) ∈Mac(R+) and θ ∈ C([0, T ];R) is a solution to (FP) if for
all w solution to (Adj) with w0 ∈ Cb(R+) and T > 0 holds∫

w0(x)c(x, T ) dx =

∫
w(x, 0) c0(x) dx+

∫ T

0

∂xw(0, t) e−V (0)+θ(t)W (0) dt. (weak)
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Well-posedness: Fixed point argument

Basic properties of adjoint problem for a continuous function θ with ‖θ‖∞ ≤ θ∞:
� Let w0(x) = W (x) then for any T < T0

w(x, 0) ≤ C(T0, θ∞)W (x) and 0 ≤ ∂xw(0, t) ≤ C(T0, θ∞)√
T − t

� Let w0 and w1 two such solutions for θ0 and θ1, respectively, then∣∣w1(x, t)− w0(x, t)
∣∣ ≤ C‖θ1 − θ0‖∞√T − t W (x)∣∣∂xw1(x, T )− ∂xw0(x, t)
∣∣ ≤ C‖θ1 − θ0‖∞.

Fixed point map

Bθ(t) := ρ−
∫ ∞
0

W (x)c(x, t) dx

From the weak formulation follows the identity

Bθ1(T )− Bθ0(T ) =

∫ ∞
0

[w1(x, 0)− w0(x, 0)]c(x, 0) dx

+

∫ T

0

[
∂xw

1(0, t)− ∂xw0(0, t)
]

exp[−V (0) + θ1(t)W (0)] dt

+

∫ T

0

∂xw
0(0, t)

(
exp[−V (0) + θ1(t)W (0)]− exp[−V (0) + θ0(t)W (0)]

)
dt
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T‖θ1 − θ0‖∞.

⇒ Local existence for some T = T (θ∞) > 0 and θ ∈ C([0, T ];R)

Refined analysis of ∂xw(0, t) yields uniform lower bound θ(t) > −∞
⇒ Global existence by iteration of local existence argument
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Regularity: Smoothness of order parameter

Fixed point argument yields θ ∈ C([0, T ];R)

Two observations:

1. Dirichlet-to-Neumann map gains 1/2 Hölder regularity (Schauder estimate):

θ ∈ C0,α([0, T ];R) ⇒ t 7→
∫ t

0

∂xc(0, s) ds ∈ C0,α+1/2−([0, T ];R)

2. θ̇ and ∂xc(0, ·) have the same regularity:

θ̇(t) = −
∫
W∂tc dx = W (0)∂x log

c

cθ(t)

∣∣∣∣
x=0

+ bulk

= W (0)∂xc(0, t)−
(
W (0)b(0, t) +W ′(0)

)
cθ(t)(0) + bulk

⇒ formally |θ̇(t)−W (0)∂xc(0, t)| ≤ C.

Iterate three times: θ ∈ C1([0, T ],R) and c(t, ·) ∈ C1(R+,R+).
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θ̇(t) = −
∫
W∂tc dx = W (0)∂x log

c

cθ(t)

∣∣∣∣
x=0

+ bulk

= W (0)∂xc(0, t)−
(
W (0)b(0, t) +W ′(0)

)
cθ(t)(0) + bulk

⇒ formally |θ̇(t)−W (0)∂xc(0, t)| ≤ C.

Iterate three times: θ ∈ C1([0, T ],R) and c(t, ·) ∈ C1(R+,R+).
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3. Energy-dissipation, gradient structure
and longtime behaviour
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Energy-dissipation-identity

Regularity results allow to establish the energy–energy-dissipation inequality:

d

dt
F(c(t)) ≤ −D(c(t), θ(t)) (EED)

with

F(c) :=

∫
(log c− 1)c+

∫
(V + log a)c+

1

2
θ2 with θ := ρ−

∫
Wc

D(c) :=

∫
a

(
∂x log

c

cθ

)2

c with cθ(x) := a(x)−1 exp(−V (x) + θW (x))

The term 1
2
θ2 is typical for free energies of interaction type (McKean-Vlasov):

1

2
θ2 =

1

2

∫∫
W (x)W (y)︸ ︷︷ ︸

=K(x,y)

c(x)c(y) + ρ(ρ− θ) +
1

2
ρ2

The (EED) and equation in the form

∂tc(x, t) = ∂x

(
a(x) c(x, t) ∂x log

c(x, t)

cθ(t)(x)

)
and log

c(0, t)

cθ(t)(0)
= 0

suggest a gradient flow formulation wrt. a-weighted transportation metric.
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Gradient flow formulation with boundary condition (formal)

State space including constraint

M =

{
(c, θ) :

∫
W (x)c(x) dx = ρ− θ, c(0) = cθ(0)

}
Define Sobolev space H1

0 (ν) as closure of ϕ ∈ C∞(R+;R): ϕ(0) = 0

with respect to ‖ϕ‖2H1(ν) =

∫
a(x)|∂xϕ|2 dν

Define operator K[ν] : H1
0 (ν)→ (H1

0 (ν))∗ by

K[ν]ϕ = −∂x(a c ∂xϕ)

Then K is linear, nonnegative definite and defines metric

ψ,ϕ ∈ H1
0 (ν) : 〈ψ,K[ν]ϕ〉 =

∫
a ∂xψ ∂xϕdν.

First variation of F(c): x 7→ log c(x,t)
cθ(x)

satisfies boundary condition and hence

∂tc(x, t) = −K[c(·, t)]DF(c) = ∂x

(
a(·)c(·, t)∂x log

c(·, t)
cθ(t)(·)

)
.
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Qualitative convergence to equilibrium

Theorem (Convergence to equilibrium)

For any L > 0 the solution c(·, t) converges uniformly on the interval [0, L] as t→∞
to the equilibrium cθ(·) with θ = θeq(ρ). If ρ ≤ ρs then also

lim
t→∞

∫ ∞
0

W (x)|c(x, t)− cθ(x)| dx = 0 .

Proof (Sketch):

� EED Ḟ ≤ −D and lower semicontinuity of F and D
⇒ LaSalle’s invariance principle: c→ cθ∞ for some θ∞ ≤ 0

� Global existence: inft>0 F(c(t)) ≥ F(cθeq(ρ))

and monotonicity of θ 7→ F(cθ) yields θ∞ ≤ θeq(ρ)

� “Tightness” argument to pass to the limit in

θ(t) +

∫
Wcθ(t) → θ∞ +

∫
Wcθ∞

and to conclude θ∞ = θeq
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4. Rate of convergence to equilibrium
(subcritical)
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Free energy and relative entropies

For ρ < ρs the minimizer of

F0(ρ) := inf

{
F(c) : θ +

∫
Wc = ρ

}
is attained.
⇒ normalized free energy: Fρ(c) := F(c)−F0(ρ)

Relative entropy identities

Let ρ < ρs, then for all c ∈Mac(R
+)

Fρ(c) = H
(
c|cθeq

)
+ 1

2
(θ − θeq)2 with θ = ρ−

∫
Wc,

where H(f |g) :=
∫
gΨ
(
f
g

)
with Ψ(r) := r log r − r + 1.

For any θ < 0 and any c ∈Mac(R
+) with θ +

∫
Wc = ρ

Fρ(c) + 1
2
(θ − θeq)2 ≤ H(c|cθ).

André Schlichting • Non-local Fokker-Planck related to the Becker-Döring model • April 18, 2017 • Page 14 (19)



Free energy and relative entropies

For ρ < ρs the minimizer of

F0(ρ) := inf

{
F(c) : θ +

∫
Wc = ρ

}
is attained.
⇒ normalized free energy: Fρ(c) := F(c)−F0(ρ)

Relative entropy identities

Let ρ < ρs, then for all c ∈Mac(R
+)

Fρ(c) = H
(
c|cθeq

)
+ 1

2
(θ − θeq)2 with θ = ρ−

∫
Wc,

where H(f |g) :=
∫
gΨ
(
f
g

)
with Ψ(r) := r log r − r + 1.

For any θ < 0 and any c ∈Mac(R
+) with θ +

∫
Wc = ρ

Fρ(c) + 1
2
(θ − θeq)2 ≤ H(c|cθ).

André Schlichting • Non-local Fokker-Planck related to the Becker-Döring model • April 18, 2017 • Page 14 (19)



Weighted logarithmic Sobolev inequalities

Weighted log-Sobolev inequalities

Let δ > 0. Then, there exists a constant CLSI = CLSI(V,W, a, δ), such that for all c
with θ +

∫
Wc = ρ and −1/δ ≤ θ ≤ −δ as well as c(0) = cθ(0) holds∫ ∞

0

a

W
cθ Ψ

(
c

cθ

)
≤ CLSI D(c, θ).
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Wc = ρ and −1/δ ≤ θ ≤ −δ as well as c(0) = cθ(0) holds∫ ∞

0

a

W
cθ Ψ

(
c

cθ

)
≤ CLSI D(c, θ).

Proof: Modify argument due to [Bobkov& Götze 99]: Derive log-Sobolev inequality as
Poincaré type inequality in Orlicz-spaces:

Let ν ∈ P(R+) and µ ∈Mac(R
+) and let A be the smallest constant such that for

any smooth f on R+ with f(0) = 1 holds

Entν(f) :=

∫
f log

f∫
f dν

dν ≤ A
∫
|∂x log f |2f dµ.

Then, B/4 ≤ A ≤ B with B := sup
x>0

ν
(
[x,∞]

)
log

(
1 +

e2

ν
(
[x,∞]

))∫ x

0

dy

µ(y)
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Free energy-dissipation-estimate

Via interpolation for k > 0

Fρ(c) ≤ H(c|cθ) =

∫
cθΨ

(
c

cθ

)
≤
(∫

a

W
cθΨ

(
c

cθ

)
︸ ︷︷ ︸

weighted LSI

) k
k+1
(∫ (

W

a

)k
cθΨ

(
c

cθ

)
︸ ︷︷ ︸

assume

) 1
k+1

Free energy-dissipation-estimate

Let ρ < ρs, δ > 0 and k > 0. Let −1/δ ≤ θ ≤ −δ. Then, for any c ∈Mac(R
+) such

that θ +
∫
Wc = ρ, c(0) = cθ(0) and(∫ (

W

a

)k
cθ Ψ

(
c

cθ

)) 1
k

≤ C0

there exists a constant CLSI = CLSI(V,W, a, δ) such that

Fρ(c)
1+k
k ≤ C0 CLSID(c, θ).

In particular, if a has the same growth as W at∞, then there exists a constant
CLSI = CLSI(V,W, a, δ) such that Fρ(c) ≤ C0 CLSID(c, θ).
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Quantified rate of convergence

Further ingredients:
� Lower dissipation bound: D(c, θ) ≥ ε > 0, whenever θ ≥ θeq + δ

� Propagation of moment bound:
Whenever

∫
Wk+1

ak
c(0, x) dx ≤ C0 for k > 0, then for any t0 > 0 and

t0 ≤ t1 < t2 holds

sup
t∈[t1,t2]

(
‖c(t, ·)‖∞ +

∫
W k+1

ak
c(t, x) dx

)
≤ C,

where C is uniform on time-intervals ∀t ∈ [t1, t2] : −δ−1 ≤ θ(t) ≤ −δ .

Theorem (Rate of convergence in subcritical regime)

Let ρ < ρs and let the initial condition c(·, 0) satisfy for some k > 0

Fρ(c) ≤ C0 and
(∫

W k+1

ak
c(x, 0)

)
dx ≤ C0

then there exists λ and C such that Fρ(c(t)) ≤ 1

(C+λt)k
.

In particular, if supx∈R+
W (x)
a(x)

≤ C0, then for any initial data
∫
W (x)c(x, 0) dx <∞

there exists C > 0 and λ > 0 such that Fρ(c(t)) ≤ Ce−λt.
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Summary
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Summary

� dynamic model of condensation/dissolution of droplets

� non-local Fokker-Planck equation including boundary conditions

� local existence via fixed point argument

� improved regularity by Schauder estimate

� Gradient flow structure with boundary condition

� qualitative convergence to equilibrium via entropy-dissipation-identity

� rate of convergence (subcritical) via modified entropy method based on
weighted logarithmic Sobolve inequalities and interpolation

Open questions

� supercritical behaviour: description by coarsening equations (LSW)
similar to the Becker-Döring equation [Niethammer ’03, S. ’16]

� nucleation: timescales of (dynamic) metastable states
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Thank you for your attention!
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