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Phase transitions in the McKean—Vlasov model

[Carrillo-Gvalani-Paviliotis-S. ARMA *20]
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The McKean—Vlasov equation — Derivation

MUNSTER

» Overdamped Langevin equation defined on T¢ ~ [0, L)¢

N
dX;i = —% S VWX - XP)dt+V2dB]  i=1,...,N
J=Lj#i
m k € [0,00) interaction strength (bifurcation parameter)
m The mean-field limit N — oo is governed by the McKean—Vlasov equation

010 = Ao+ KV - (VW x ) in T¢ x (0,7

m properties encoded in interaction potential W : TdL — R (coordinate-wise even)
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» Overdamped Langevin equation defined on T¢ ~ [0, L)¢

N
i K i j i ;
dXi=-% Z lVW(X — X)dt ++2dB;  ,i=1,...,N
Jj=1j#i
m k € [0,00) interaction strength (bifurcation parameter)
m The mean-field limit N — oo is governed by the McKean—Vlasov equation

010 = Ao+ KV - (VW x ) in T¢ x (0,7

m properties encoded in interaction potential W : ’]I‘dL — R (coordinate-wise even)

Some applications: Models for finite N or mean-field limit include
Molecules of a gas (Lennard—Jones, Van-der-Waals)

Collective motion of agents (attractive-repulsive)

Opinions of individuals (Hegselmann-Krause)

Liquid crystals / nanorods (anisotropic, Onsager, Maier—Saupe)
Nonlinear synchronizing oscillators (Kuramoto)

|
|
|
|
|
m Chemotaxis models (Patlak—Keller—Segel)
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Example: Nonlinear synchronization of oscillators

The Kuramoto model: W(z) = —cosz and L = 2«

MUNSTER

K < K¢, no phase locking K > K¢, phase locking
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W(z) = —5ge 207

with 02 = %, L =10, k = V2L > k..



Transition points and types of phase transitions —~— wwu
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Free energy functional (Lyapunov property, gradient flow)
A= V-(8 7 2%s))
Frlo) =/ QIOg@d:r+— [ wiz-ye@)ely) dzdy .
T

Td xT¢



Transition points and types of phase transitions
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Free energy functional (Lyapunov property, gradient flow) Mo oxlly

J-}(Q)z/T QIOde:r+— ﬂ W(z —y)e(r)o(y) drdy .

’]Td xT¢

_continuous___

Definition: Let oo, = L™%. k. is transition point, if:
e For k < K. iS 0o global minimizer of F,, and unique for Kk < k.
e For k > k. exists another global minimizer g,

llo:— e lly
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Transition points and types of phase transitions

Free energy functional (Lyapunov property, gradient flow)

J-}(@):/T QIOg@d:r+— H W(z —y)e(r)o(y) drdy .

’]Td xT¢

Definition: Let oo, = L™%. k. is transition point, if:
e For k < K. iS 0o global minimizer of F,, and unique for Kk < k.
e For k > k. exists another global minimizer g,

Results and Goals:
» Bifurcation analysis and local stability around g, = L™
m Classification for continuous and discontinuous transitions
m Understanding of the free energy landscape

= Dynamical properties related to nucleation and coarsening

Mo oxlly

__continuous____

Ao~ oxll;

discontinuous
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Characterization of phase transition

Theorem [Carrillo-Galani-Pailiotis-S. ,20]
T ] N
[ L] w

Let W : NY - R denote the (real) Fourier modes of W.
m If there is only one dominant unstable mode k£*: For o > 0 small

W (k)

enough holds

aW(k*) <W(k) forallk#k*: W(k) <0,

then the transition point k. is continuous.
m If there exist (near)-dominant resonating modes k%, k?, k:
That is for § small enough exist ], ],

ke kb kS e {k’ e N?: W (k') < min W(k)+ 6
kelNd

=

} with k% = k*+k°,  _ 1

then the transition point k. is discontinuous.

= local attractive potentials lead to discontinuous phase transitions



A mountain pass theorem

[Gvalani-S. JFA "20]



Noise-induced transitions in R? ———wwu

Start form deterministic gradient flow in R?
i(t) = —VF(z) with z(0)=z¢ € R? D

e F has two global minima my, my € R%.

Describe the particle transition from m;
to ms under the influence of noise.

Modelproblem: Add Brownian motion
dX; = -VF(X;)dt + vV20dB;,

Question: Given X (0) = mq, what is the
probability that in some finite time 7" > 0, we
have that X (T') = ms in the regime o < 17
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Theorem (Freidlin-Wentzell)

The family of processes {X7} € C([0,T]; R?)
satisfy a LDP with good rate function
I:0([0,T);R%) — RU {400}

1T
10) =1 | O+ VPGP
and it holds
P(X7 €T') =~ exp <—01 inf I(fy)) oK1,
yel’

for any T' C C([0, T]; R?).



Noise-induced transitions in R?

For vy e I'={f € C*([0,T];R?) : 4(0) = m1,(T) = ma} let T* = argmax,c (o1 (F((t)) — F(7(0))):

10)2 1 [ O+ VPGP =1 [ a0 =GR+ [0 vEew)

= F(y(T7)) = F(v(0)) 2 Inf (F(v(T7)) = F(7(0))) =2 ¢ = F((0)),

By classical mountain pass theorem: c a critical value of F, i.e., 3s € RY: VF(s) = 0, F(s) = c.

= P(X7 €T) Sexp(—o 'AF)  where AF = F(s) — F(m,).
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LDP for McKean-Vlasov interaction particle system —— wwy
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= Apply argument to the McKean—Vlasov N-particle system for N > 1

N
ng:—% > VW(X'-X7)dt+v2dB], i=1,....N
j=1,5#i

m [Dawson-Girtner 1987] proved LDP with rate function for u € AC?([0,T], P2(T%)) given by

1 (T
T = 7 [ 100 =V (V0 0+ kW 5 i),
m Associated quasipotential to LDP is F!

P(transition: gcc — 0,) S exp(—N inf{7,(u(-)) : £(0) = 000, W(T') = gﬁc})

< exp (—Ninf{ sup (Fio(u(T)) = F(11(0))) = 1(0) = 000, u(T) = Qm})-

ko Trelo,T)



Discontinuous phase transitions and metastability

m N-particle system is metastable at disc. phase transition

m By [Dawson-Gértner 1989] need to understand free energy .
1free energy K>Ke

droplet
states metastable

Uniform State staple

e ————— e o o

K<Ke 3

m Missing ingredient: mountain pass theorem for F
Difficulties:
e (P(T%), W) only metric space
e F,. only lower semicontinuous




A mountain pass theorem —"— wwu

MUNSTER

Theorem [Gvalani-S. ’20]

If ., has two distinct minimizers oo, = 1/L¢ and
0, € P(T9), then there exists o* € P(T%) distinct from gn,
and g, such that [0F,_|(¢*) = 0.

Moreover: F,_(0*) =c with c¢= ng max;eo,1s] F (V(t))
v
where I' = {C([0, T}; P(T)) : 7(0) = ¢oo; Y(T) = 0x.}-

Corollary (Arrhenius law)

The empirical McKean-Vlasov process oV) satisfies

free energy

W2 _
P[o™(T) € B (0x.), 0™ (0) = o] &2

for N sufficiently large with E(WQ(Q(()N), 000)) — 0 and

A
1
[}
[}
[}
[}
L}
L}
L}
I
L}
L}
L}
A= F, (0*) — Fr.(000) with ¢* the mountain pass point. _i




A structure preserving disretization of the
McKean-Vlasov model

[S-Seis arXiv: 2004.13981]



Motivation: Structure preserving discretization

MUNSTER

Goal: Consistent discretization of

Op =V - (aVp+ pVW % p)



Motivation: Structure preserving discretization ———wwu

MUNSTER

Goal: Consistent discretization of

Op =V - (aVp+ pVW % p)

Desired properties:
= mass and positivity preserving
= Free energy

1
Flp) =0 / plogp+ 3 ﬂ Wz —y)p(z)p(y)
dissipation principle
d
GT0 == [ Vo4 W <) s = D)

= consistent stationary states

DF(p*)=0 and D(p*) =0.



Motivation: Structure preserving discretization — AL

Goal: Consistent discretization of Desired properties:
= mass and positivity preserving
Op =V -(aVp+ pVW xp) = Free energy
Finite volume SG-scheme: 1
Flp) =0 / plogp+ 3 ﬂ Wz —y)p(z)p(y)
PK PK |K |L| frl =
K - =
L Z Tki 0 dissipation principle
LK
d
with normal flux fj:F! E}"(p) = —/ p|V(clogp+ W x p)|* dz = —D(p)
Q
n+1 n+1
_— _— p?(He 7 pz+1 -5k = consistent stationary states
KL —U4KL e e
eBr — e B DF(p*)=0 and  D(p*)=0.

and discrete potential gradient

n +
gt =1 P30S (e — ) — Wian — ).
JeT



Goal: Consistent discretization of
Op =V - (aVp+ pVW % p)

Finite volume SG-scheme:

Cell problem: The normal flux solves

Jrr = —00.p(-) +qxrp(-) on (0,1),

p(0) =px  and  p(1) = pr.

m fxr and p:[0,1] - R are unknown

PK PK |KIL| frl =
K =0
e T LZK TkL m first-order boundary value problem
Connection to Upwind:
with normal flux f"+1
0
it . frr "= prclax)+ + prlaxe) -
n+l _ n+l P?(He 5 —pptte 5T
KL —U4KL e e
KL KL
€ 20 — e 20
and discrete potential gradient
n+1
p + ’
dict = YW H (W — ) = W(os — ).

JeT

MUNSTER



Results ——

Theorem [S.-Seis arXiv:2004.13981]

Given Voronoi tesselation 7" with sup, diam K < h
and h|0K| < Ciso| K| for all K € T".

Then 3!{p"}, .y solution of SG-scheme.



Results — L

Theorem [S.-Seis arXiv:2004.13981] F'(p) = 08™(p) + E(p),
Given Voronoi tesselation 7" with supy diam K < h Ry oy
and h|K| < Cieo|K] for all K € T. SHp) = ;'KW log px
Then J!{p" luti f SG-scheme. 1

en 3!{p }neN.so.u 1(.)n 0 . .sc eme ghp) = = Z|K||L|W($K — 21)pKpL
= Free energy dissipation principle 251

~ PK

h( n+1 _]:h n rH n n+1 ’H — K lo —

Fr(pnth) (0") | " 10" _ ey, (p|p) ;I lprclog =

ot ot



Results — L

Theorem [S.-Seis arX1v:2004.13981] F'(p) = 08™(p) + E(p),
Given Voronoi tesselation 7" with supy diam K < h hy oy
and h|K| < Cieo|K] for all K € T. SHp) = ;'KW log px
Then J!{p" luti f SG-scheme. 1
en 3!{p }neN.so.u 1(.)n 0 . .sc eme ghp) = = Z|K||L|W($K — 21)pKpL
= Free energy dissipation principle 251
~ PK

]:'h n+1y) _ ]:h n rH n n+1 ’H — K lo —

(p"+1) (0") | " 10" _ ey, v ;I lprclog =

ot ot

= Characterization of stationary states of scheme as:
e critical point of F"
e vanishing dissipation D" = 0



Results

MUNSTER

Theorem [S.-Seis arXiv:2004.13981]

Fp) = 08" (p) + E"(p),

Given Voronoi tesselation 7" with sup, diam K < h

hoy —
and h|OK]| < Cio| K| for all K € T*. SHp) = ;'KW log pxc
Then 3!{p" luti f SG-sch . 1
en 3!{p }neN.so.u 1(.)n 0 . .sc eme ghp) = = Z|K||L|W($K — 21)pKpL
= Free energy dissipation principle 251
Fh(pnty — Fr(pm)  H(p" | pm ) it Ml p) ZIKIpK log =
57 +o 50 =-D"(p"").

= Characterization of stationary states of scheme as:
e critical point of F"
e vanishing dissipation D" = 0

= Longtime behavior of scheme to stationary states



Results

Theorem [S.-Seis arXiv:2004.13981] F'(p) = 08"(p) + €"(p)

MUNSTER

Given Voronoi tesselation 7" with sup, diam K < h

h _
and h|0K| < Cis| K| for all K € T™. S"(p) = ;IKMK log pi

Then 3!{p"}, .y solution of SG-scheme.
= Free energy dissipation principle KL

Fr(omt) — Fh(pn)  Hp" | oY) e Ml )= ZIKIpxlog—
ot T i

1
&"(p) = 3 S IK|LIW (zx — 21)pxcpr

= Characterization of stationary states of scheme as:
e critical point of F"
e vanishing dissipation D" = 0
= Longtime behavior of scheme to stationary states
= convergence of scheme as 0t, h — 0.



Results

Theorem [S.-Seis arXiv:2004.13981]

Given Voronoi tesselation 7" with sup, diam K < h
and h|0K| < Ciso| K| for all K € T".

Then 3!{p"}, .y solution of SG-scheme.
= Free energy dissipation principle

%(pn | pn—i-l) _ _Dh(pn-i-l).

Fh(pntt) — F(p™)
5t to 5t

= Characterization of stationary states of scheme as:
e critical point of F"
e vanishing dissipation D" = 0
= Longtime behavior of scheme to stationary states
= convergence of scheme as 0t, h — 0.

Discrete scheme has a formal generalized gradient struc-
ture (upto implicit time discretization)

MUNSTER

Fp) = 08" (p) + E"(p),

S"(p) = > _|K|px log px
K

1
EMp) = 3 S IK|LIW (zx — 21)pxcpr
K,L

Hip | p) = ZIKIpxlog—

Wetd * bov $&Si Lyl cmnvegone

h & v



Numerics: Metastability and free energy decay

MUNSTER

Scheme resolves near-metastable states at high accuracy
= implement a string method [E, Ren, Vanden-Eijnden '02 & "07]






String method for McKean-Vlasov gradient flow —— wwy

MUNSTER

Algorithm to approximate saddle point following [E-Ren-Vanden-Eijnden *02 & "07]:



Scharfetter-Gummel gradient flow structure ———wwu

The SG-scheme defines a potential difference qx to flux relation fxy,

9KL _9KL

pre s — pre” 4

IxL(PK,PLsaKL) = 4K L TR —TRL -
€ 20 — € 20

Turn into a free-energy difference to flux relation by setting
PK
r=¢ — &k =olog— +qxrL
PL
to arrive at

log
* . X
DeR*(p, €)|xL = fxL (PKvPL? x — olog _px) =20 Smh(—)

PL 20

Z _z
€20 e 20
PK PL

Z _ .z
e20 e 20
PK pL

— log




Numerics: Metastability and free energy decay

l — SG
—— upwind

10-1 4

1073 4

1075 4

10-7 4

1079 4

10-11 4

10713

0 2 4 6 8 10

Upwind-scheme from [Bailo, Carrillo, Hu arXiv:1811.11502]
Converges earlier in physical time at higher computational cost.



Nonlocal interaction equations on graphs



Motivation: Graph approximation of data sets
Ingredients:
= n points {z;}7_; sampled from p € M(R?) = empirical measure p" = L 3" 5,

MUNSTER



Motivation: Graph approximation of data sets — wwy

MUNSTER

Ingredients:
= n points {z;}?_; sampled from p € M(RY) = empirical measure p" = L 37" 4,
m a symmetric weight function n: G — [0,00) with G = { (z,y) € R% x IRJI x #y,n(z,y) > O}
= (u",n) defines a weighted graph
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Goal: Evolution equations on graphs —~— wwu

MUNSTER

For p € P(R?) and symmetric W € C (]Rd x RY) define the interaction energy

2 H (z,y) dp(z) dp(y)

R xR?



Goal: Evolution equations on graphs — —wwu

MUNSTER

For p € P(R?) and symmetric W € C (]Rd x RY) define the interaction energy

2 H (z,y) dp(z) dp(y)

R xR?

Subgoals:

m Dynamic is stable under graph limit n — oo such that p"—pu
(u™,n) becomes a continuous graph/graphon (u,n)

= Dynamic is stable for local limit: Let g = Leb(R?) and 7’ (x,y) = §~(4+2) n(Ty)
Then, the limit § — 0 shall be the interaction/aggregation equation

Orpr =V - (pe VW % py) (IE)



Goal: Evolution equations on graphs — —wwu

MUNSTER

For p € P(R?) and symmetric W € C (]Rd x RY) define the interaction energy

2 H (z,y) dp(z) dp(y)

R xR?

Subgoals:

m Dynamic is stable under graph limit n — oo such that p"—pu
(u™,n) becomes a continuous graph/graphon (u,n)

= Dynamic is stable for local limit: Let g = Leb(R?) and 7’ (x,y) = §~(4+2) n(Ty)
Then, the limit § — 0 shall be the interaction/aggregation equation

Orpr =V - (pe VW % py) (IE)

(IE) is Wasserstein gradient flow for £ [Carrillo-DiFrancesco-Figalli-Laurent-Slepcev]

Strategy: Find suitable nonlocal metric 7 on (u,n)
= Construct gradient flow of & wrt T as nonlocal interaction equation (p,n)



Inspiration: The numerical upwind scheme ———wwu
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What is the nonlocal analog of the continuity equation on R%:
Ope+V -3, =0 withflux  ji(z) = pi(2)ve(z) 7
Fluxes j; are defined on edges (x,y) € G = {n > 0} and the divergence is nonlocal

Drp(@) + (V- 4i)) () = Dupr(a) + /R 0w, y) dola,dy) =0 . (div)
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Fluxes j; are defined on edges (x,y) € G = {n > 0} and the divergence is nonlocal
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Given an antisymmetric vectorfield vy : G — R: welocity of a particle going from x to y.



Inspiration: The numerical upwind scheme

What is the nonlocal analog of the continuity equation on R%:
Ope+V -3, =0 withflux  ji(z) = pi(2)ve(z) 7
Fluxes j; are defined on edges (x,y) € G = {n > 0} and the divergence is nonlocal
Oupla) + (7 30)@) = ) + [ (o) (o) =0 (dv)
J R¢
Given an antisymmetric vectorfield vy : G — R: welocity of a particle going from x to y.
Upwind flux: Set (a)

. =max{0,a} and (a)_ = max{0, —a} and define

Ji(@,y) = Juplve] (z,y) = ve(2,y), p(z)p(y) — ve(z, y)_p(@)p(y) - (flux)

Good properties: known from numerics
m positivity preserving
m stability, monotonicity

m energy decreasing



Inspiration: The numerical upwind scheme ———wwu

MUNSTER

What is the nonlocal analog of the continuity equation on R%:
Ope+V -3, =0 withflux  ji(z) = pi(2)ve(z) 7
Fluxes j; are defined on edges (x,y) € G = {n > 0} and the divergence is nonlocal

0 () + (V-3)@) = On(a) + [ n(e) il ) = 0. (div)

Given an antisymmetric vectorfield vy : G — R: welocity of a particle going from x to y.

Upwind flux: Set (a), = max{0,a} and (a) = max{0,—a} and define

+
Ji(@,y) = Juplvd (2, y) = vz, y), p(x)u(y) — velz, y)_p(z)p(y) - (flux)
Good properties: known from numerics Ingredients for abstract setup:
m positivity preserving K,)(z) == (V- Jup[v])(z) = D,R(0,v)

m stability, monotonicity — 1
Rie.v) = 5 [[ 10 (xqs0y (,9) dp(@) duly)

m energy decreasing
+ X (<o) (z.) du(@) dp(y))



Upwind transportation metric — LA
= Nonlocal upwind continuity equation (div)-+(flux):
Ola) + [ 1(o9) (1(.0). u(o) ) = i) _a)on() = 0. (CE)

Definition of upwind transportation metric via Benamou-Brenier formulation

T(po,p1)? = int {/Olﬁ(pt,vt)dt}.

(p,v)ECE



Upwind transportation metric

= Nonlocal upwind continuity equation (div)-+(flux):

Ola) + [ 1(o9) (1(.0). u(o) ) = i) _a)on() = 0.

Definition of upwind transportation metric via Benamou-Brenier formulation

= inf R(ps, vy) dt
T (po, p1)? (p,il)“e on { / (e, vt) }

Driving vector-field v; = —V% = V(W * p;) with VV (2,y) = V(y) — V(z) leads to

— " — wwu

MUNSTER

Oipi(x) +/}Rd n(x,y) (V(W*pt)(x y)_pe(x) du(y) — pe(y) V(W * py) (2, y) () dp(y)) =0,



Upwind transportation metric — LA
= Nonlocal upwind continuity equation (div)-+(flux):
Ola) + [ 1(o9) (1(.0). u(o) ) = i) _a)on() = 0. (CE)

Definition of upwind transportation metric via Benamou-Brenier formulation

T(po,p1)? = int {/Olﬁ(pt,vt)dt}.

(p,v)ECE

Driving vector-field v; = —V% = V(W * p;) with VV (2,y) = V(y) — V(z) leads to

Depe(x) + /}Rd n(z,y) (V(W o) (2, y)_pe(x) duly) — pe(y) V(W * pe) (2, ), p(z) dp(y)) =0,

Main results [Esposito-Patacchini-S.-Slepcev ’21]

m Properties of nonlocal upwind transportation quasi-metric (non-symmetric)

m Gradient flows in Finsler geometry
m Variational framework for (NL2IE)

= Stability of (NL2IE) under graph limit u™ — p



Numerical example: Dumpbell shape — —wwu

MUNSTER

Evolution on random geometric graph based on 240 sample points in 2D:

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8
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Numerical example: Dumpbell shape —"— wwu

MUNSTER

Evolution on random geometric graph based on 240 sample points in 2D:

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8



Finslerian geometry and gradient flows —— wwy
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For any (p¢)tejo,1) € AC([O, 1]; (P2(R9), 7;)) exists an antisymmetric (v¢)sefo,1) such that
(Pt J1)eeio,1) € CE and

dj (=, y) = vi(w,y), dp(x) du(y) — ve(z,y)_ du(z)dp(y) -

The geometry induced by 7 is Finslerian:
= inner product in tangent space depends on p and w € T, P (R4)!

Finslerian upwind product

For p € Py(R?) and w € T,P2(R%) define g, ., : T,P2(R?) x T,P2(RY) — R by

Gpaw(w,0) = [[ul@, y)o(a,y) n(z,y)x
G

X (X{w>0} (@, y) dp(z) du(y) + X {w<oy (2, y) du(z) dp(y)) -

— define gradient flow for interaction energy £ in terms of curves of maximal slope

See also [Ohta-Sturm ’09, "12] and [Agueh '12] for gradient flows in Finslerian setting.



Variational characterization of solutions —"— wwu
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The de Giorgi functional gives a variation characterization of solutions to

dipr = K, (=YW xp,)  in C([0,T] x RY)* | (NLIE)

Theorem (Curves of maximal slope characterization)

For (pt)iejo,r) € AC([0,T]; (P2(R?), 7,.)) take (pt, 34)iepo,r] € CE with

dji(z,y) = ve(z,y), dp(z) du(y) — ve(z,y) - du(z) dp(y) -
and define .
Jr(p) = E(pr) — E(po) + /0 (R(pt; ve) + R(pe, —VW x py)) dt.

Then Jr(p) > 0 and Jr(p) = 0 iff (pt)iejo,7) is a weak solution to (NLIE).



Variational characterization of solutions — — Wwu

MUNSTER

The de Giorgi functional gives a variation characterization of solutions to

dipr = K, (=YW xp,)  in C([0,T] x RY)* | (NLIE)

Theorem (Curves of maximal slope characterization)

For (pt)iejo,r) € AC([0,T]; (P2(R?), 7,.)) take (pt, 34)iepo,r] € CE with

dji(z,y) = ve(z,y), dp(z) du(y) — ve(z,y) - du(z) dp(y) -
and define .
Jr(p) = E(pr) — E(po) + /0 (R(pt; ve) + R(pe, —VW x py)) dt.

Then Jr(p) > 0 and Jr(p) = 0 iff (pt)iejo,7) is a weak solution to (NLIE).

m Minimizers exist by direct method, however not necessarily global!
m Possibility: Redo the minimizing movement scheme in the quasimetric setting
m Instead: Show existence via finite dimensional approximation and stability



Stability with respect to graph approximations ———wwu
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Let u™ € M, (R%) be such that y"—pu and define
T
Tr(u ) = E(08) = £ + [ (RO 7 0) + R . =TW )



Stability with respect to graph approximations =——=—wwu
Let u™ € M, (R%) be such that y"—pu and define
T
Telus ") = E() = E@R)+ [ (R o) + R, ~TW )

0
Stability of gradient flows a la Sandier-Serfaty

Let p™ € AC([0, T; (P2(R%), 7,,n)) such that sup,, Gr(u™; p") < oco.
Then, there exists p € AC([0, T]; (P(R?),7,,)) such that

PPt in Py(RY) for a.e. t € [0,T);
Jup[v"] = "= = Jup[v] in Mioc(G % [0,T]);

T T
liminf/ ﬁ(u";p?,v?)dtZ/ R(p; e, ve) dt;
n 0 0
T_ o T_ o
1iminf/ R(u”;p?,—VW*p?)dtZ/ R(; pe, =VW % py) dt .
n 0 0

In particular weak solutions of (NLIE) on graph (u™,7) converge to ones on (u, 7).



Stability with respect to graph approximations =——=—wwu
Let u™ € M, (R%) be such that y"—pu and define
T
Telus ") = E() = E@R)+ [ (R o) + R, ~TW )

0
Stability of gradient flows a la Sandier-Serfaty

Let p™ € AC([0, T; (P2(R%), 7,,n)) such that sup,, Gr(u™; p") < oco.
Then, there exists p € AC([0, T]; (P(R?),7,,)) such that

PPt in Py(RY) for a.e. t € [0,T);
Jup[v"] = "= = Jup[v] in Mioc(G % [0,T]);

T T
1iminf/ ﬁ(u";p?,v?)dtZ/ R(p; e, ve) dt;
n 0 0
T_ o T_ o
1iminf/ R(u”;p?,—VW*p?)dtZ/ R(; pe, =VW % py) dt .
n 0 0

In particular weak solutions of (NLIE) on graph (u™,7) converge to ones on (u, 7).

Corollary: Existence of weak solution to (NLIE) via finite-dimensional approximation.






Finslerian product: two basic properties

Gpw(u,v) H u(z, y)v(z,y) n(z,y)x

X (Xqw>0y (@, y) dp(z) dp(y) + X {w<oy (z, y) du(z) dp(y)) -



Finslerian product: two basic properties

Gp,w(u,v) fj u(z, y)v(x,y)n(x, y)x
X (Xgwso0} (z,y) dp(x) du(y) + Xw<oy (z,y) du(z) dp(y)) -
= Chain-rule: For (p;)icpo,1] € AC([0,1]; (P2(R%),T)) and ¢ € C°(RY)

c(lit /det J]Vso z,y)n(x,y) dj (2, Y) = 9o, w, (wtvvw)



Finslerian product: two basic properties

Gp,w(u,v) fj u(z, y)v(x,y)n(x, y)x
X (Xgwso0} (z,y) dp(x) du(y) + Xw<oy (z,y) du(z) dp(y)) -
= Chain-rule: For (p;)icpo,1] € AC([0,1]; (P2(R%),T)) and ¢ € C°(RY)

c(iit /det fIV¢ z,y)n(x,y) dj (2, Y) = 9o, w, (wt,VgO)

m One-sided Cauchy-Schwarz: For all v,w € T,P2(R%) holds
9p.(w, ) j J vt wnte ) (wie,v). do(e) duly) — wiz,y) - du(z) do(y)

< ﬂ v(z,y), w(z,y), 0z, y)dp(z) du(y) + Hv(:fc,y)_w(%y)_n(w,y) du(z) dp(y)
G

< \/gp,v ’U,’U) gp,w(waw) .



Chain rule and curves of maximal slope ——wwu

MUNSTER

Recall: interaction energy &
1
£p) = 5 [| W(a.v) dp(a) o) -

Assumption: The potential K : RY x R? — R satisfies
W) W e C(R? x RY);
W2) W is symmetric, i.e. W(z,y) =W (y,z), for all (z,y) € R? x R%;
W3) for some L > 1 and for all z,y,z € R?

(W (z,2) = W(y,2)| < L(lz—y|V |z —y[?)

local Lipschitz with at most quadratic growth
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MUNSTER

Recall: interaction energy &
1
£p) = 5 [| W(a.v) dp(a) o) -

Assumption: The potential K : RY x R? — R satisfies
W1) W e CRE x RY);
W2) W is symmetric, i.e. W(z,y) =W (y,z), for all (z,y) € R? x R%;
W3) for some L > 1 and for all z,y,z € R?

(W (z,2) = W(y,2)| < L(lz—y|V |z —y[?)
local Lipschitz with at most quadratic growth

Let p € AC([0, T); (P2(R9),T)), then V0 < s <t < T

E(pr) — E(ps) = /stjcfv%(x’y)n(w’y) dr(@,y)dn = /stg””w* (wﬂv%> 4



Chain rule and curves of maximal slope =——=—wwu
Chain rule
Let p € AC([0,T); (P2(R%),T)), then V0O < s <t <T

Curves of maximal slope: For any p € AC([0,T]; (P2(R%), T)) holds
=0& _5S> 1

1 T T
E(pT) — 5(/70) 2 _5/0 gpt,_gés(;?t) <V 6p,*v% dt — 5/0 9pywy (wt,'IUt) det .

with equality iff w, = —ﬁ%jf) = VW x p,
= Define the nonnegative de Giorgi functional by

T T
Gr(p) = Epr) —E(m) + 5 [ Do+ [ Alprwn)at >0,

where
2

6E(p¢) n(z,y) dp(z) du(y) .

Do) =2 [ [F2EL) (1)
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