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Abstract. Motivated by applications in data science, we study partial differential
equations on graphs. By a classical fixed-point argument, we show existence and
uniqueness of solutions to a class of nonlocal continuity equations on graphs. We consider
general interpolation functions, which give rise to a variety of different dynamics, e.g.,
the nonlocal interaction dynamics coming from a solution-dependent velocity field. Our
analysis reveals structural differences with the more standard Euclidean space, as some
analogous properties rely on the interpolation chosen.

Notation

For reference, we list some of the most recurrent notation of the paper.

Measures. Let A denote a generic set.
• B(A): Borel subsets of A.
• M(A): Radon measures on A.
• M+(A): nonnegative Radon measures on A.
• Given ν ∈ M(Rd) and letting A ∈ B(Rd), we denote by ν+(A) := supB∈B(A) ν(B)

and ν−(A) := − infB∈B(A) ν(B) the upper and lower variation measures of ν; the
total variation measure of ν is |ν|(A) := ν+(A) + ν−(A) and its total variation
norm is ∥ν∥TV := |ν|(Rd).

• MTV(A): Radon measures on A with finite total variation.
• M+

TV(A) := M+(A) ∩ MTV(A).
• P(A): Borel probability measures on A.

Graph.
• R2d

⧸ := {(x, y) ∈ Rd × Rd : x ̸= y} is the off-diagonal of Rd × Rd.
• µ sets the underlying geometry of the state space; it belongs to M+(Rd) and is

sometimes referred to as base measure.
• η is the edge weight function; it maps R2d

⧸ to [0, ∞).
• G is the set of edges; i.e., G = {(x, y) ∈ R2d

⧸ : η(x, y) > 0}.
• Vas(G) is the set of antisymmetric vector fields on G; that is, Vas(G) = {v : G →
R : v⊤ = −v}.
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Others.
• T is a positive, finite final time.
• ACT := AC([0, T ]; MTV(Rd)) is the space of absolutely continuous curves with

respect to ∥·∥TV from [0, T ] to MTV(Rd).
• Given a ∈ R, a+ := max{0, a} and a− := (−a)+ are its positive and negative

parts, respectively.

1. Introduction

In this manuscript, we resume the analysis of Partial Differential Equations (PDEs) on
graphs started in our previous work [12], focusing this time on a larger class of nonlocal
continuity equations. The main motivation for this study comes from data science, as
graphs represent a relevant ambient space for data representation and classification
[4, 14, 15, 21, 22, 26]. However, most of the results obtained so far in the literature are
concerned with static problems rather than time-dependent ones.

In [12], we studied the dynamics driven by nonlocal interaction energies on graphs,
whose vertices are the random sample of a given underlying distribution. We interpreted
the corresponding PDEs as gradient flows of the nonlocal interaction energies in the
space of probability measures, equipped with a quasi-metric obtained from the dynamical
transportation cost, following Benamou–Brenier [5]. In the recent papers [18, 19], the
analysis is extended to nonlocal cross-interaction systems on graphs with a nonlinear
mobility, in the context of nonquadratic Finslerian gradient flows. In [9], dynamics on
graphs are shown to be useful for data clustering; indeed, the authors connect the mean
shift algorithm with spectral clustering at discrete and continuum levels via Fokker–Planck
equations on data graphs.

The study of equations on graphs represents a natural link with the discretization
of continuous PDEs, gradient flows, and optimal transport related problems. We start
mentioning structure preserving numerical schemes for evolution equations of gradient flow
form (see for instance [2, 3, 7, 8, 27] and references therein); the use of upwind and similar
interpolations showed also beneficial in preserving the second law of thermodynamics, i.e.
the entropy decay. Inspired by the theory of numerical schemes for local conservation
laws, in [11] a new class of monotonicity-preserving nonlocal nonlinear conservation laws
was proposed, in one space dimension. The latter work might be indeed interpreted as
an equation on graphs, under some suitable assumptions on the kernel considered. In
this regard, it may be interesting to further investigate on the extension of the present
manuscript to other nonlocal conservation laws.

Another related question concerns the convergence of discrete optimal transport dis-
tances to its continuous counterpart, cf. [13,16,17]. Similarly, the variational convergence
of discretization for evolution problems is investigated in [20]. Here the discrete sys-
tems obtained can be also seen as special cases of the type of the evolution equations
investigated in the current manuscript. On a different note, we mention [25], where a
direct gradient flow formulation of jump processes is recently established — the authors
consider driving energy functional containing entropies. The kinetic relations used there
are symmetric, hence excluding for instance the upwind interpolation, which is our main
example.
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In this work, we consider continuity equations driven by a wide class of velocity fields,
including those depending on the the unknown itself, and prove existence and uniqueness
of measure-valued, as well as Lp-valued, solutions by means of Banach fixed-point theorem.
This is a slightly different concept of solution than that used in [12], where we established
a Finslerian gradient flow framework for interaction energies. As it becomes clear in the
following, the geometry of the ambient space influences the analysis and requires novel
considerations.

For ease of presentation, we describe the problem first on finite, undirected graphs.
Let X := {x1, . . . , xn} ⊂ Rd be the set of vertices and consider the edge weights wx,y ≥ 0,
satisfying wx,y = wy,x for all x, y ∈ X. For simplicity, we impose that wx,x = 0. We
consider a mass distribution ρ : X → [0, ∞) with

∑
x∈X ρx = 1. An example of Ordinary

Differential Equations (ODEs) on such a graph preserving the total mass takes the form

dρx

dt
= −1

2
∑
y∈X

(
jx,y − jy,x

)
wx,y, (1.1)

The time variation of the mass at a vertex x is triggered by the outgoing and ingoing
fluxes, described by the function j. We will be interested in the situation where the flux
is obtained by a vector field v : X × X → R, along which the mass density ρ is advected.
The vector field might itself depend also on the mass density in a local or nonlocal as
well as linear or nonlinear way. On graphs, the fluxes and velocities j, v : X × X → R
are defined on the edges, whereas the mass on the single vertices. For this reason, the
relation between flux and velocity strongly depends on the chosen mass interpolation
on vertex pairs. We consider a general interpolation function Φ : R3 → R to understand
its role for the dynamics better. Hence, the continuity equation in flux-form (1.1) is
complemented by constitutive equation relating the velocity to the flux

jx,y = Φ
( 1

n
ρx,

1
n

ρy, vx,y

)
.

In [12], we also considered the case of graphs with infinite vertices, namely, the PDEs
resulting from letting n to ∞. Thus, we introduced a unified setup entailing both discrete
and continuum interpretations.

The vertices are points in Rd and the edges are determined by a nonnegative symmetric
weight function η : R2d

⧸ → [0, ∞); indeed, the set of edges is G := {(x, y) ∈ R2d
⧸ : η(x, y) >

0}, where R2d
⧸ = {(x, y) ∈ Rd × Rd : x ̸= y}. From the discrete setting, the set of

vertices is replaced by a general measure on Rd, denoted µ; a discrete graph with vertices
X := {x1, . . . , xn} ⊂ Rd corresponds then to µ being the empirical measure of X, i.e.,
µ = 1

n

∑n
i=1 δxi . This generalization is natural in applications to machine learning, since

data have the form of a point cloud randomly sampled from some measure in Euclidean
space. With this notation, the PDEs we study have the form

∂tρ + ∇ · j = 0, (1.2a)
j = F Φ(µ; ρ, v), (1.2b)

where ∇ and ∇· are the nonlocal gradient and divergence, respectively (cf. Definition 2.1
below), and F Φ is an interpolation-dependent flux.
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In [12], we considered the upwind interpolation between vertices, as it is a reasonable
choice for both the dynamics and the gradient flow structure. More precisely, we fixed
Φ(a, b, v) = av+ − bv− and introduced the following nonlocal continuity equation:

∂tρt(x) +
∫
Rd

(ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−) η(x, y) dµ(y) = 0,

for µ-a.e. x ∈ Rd. Note that we let here ρ ≪ µ for ease of presentation, although it is not
necessary. We focused on the specific case of the nonlocal-interaction equation, that is,

∂tρt(x) = −
∫
Rd

jt(x, y)η(x, y) dµ(y) =: −(∇ · jt)(x),

jt(x, y) = ρt(x)vt(x, y)+ − ρt(y)vt(x, y)−,

vt(x, y) = − (K ∗ ρt(y) − K ∗ ρt(x) + P (y) − P (x)) .

(NL2IE)

The equation above is actually a particular case of a nonlocal conservation law, as the
velocity field depends on the configuration itself. The theory of generalised Wasserstein
gradient flows was shown to be useful to prove existence of weak solutions to (NL2IE)
and to provide information on the underlying geometry structure of the configuration
space, which is the set of probability measures with finite second-order moments. The
latter, equipped with quasi-metric introduced in [12], has Finsler structure, rather than
Riemannian. Among others, open problems include the contractivity of the quasi-distance
(cf. [23, 24]), the stability and uniqueness of weak solutions.

Based on the above considerations, in this paper, we obtain existence and uniqueness
of measure and Lp solutions for the class of PDEs (1.2) by means of a classical Banach
fixed-point argument. This complements the analysis started in [12], as it concerns
general flux interpolations as well as a larger class of velocity fields. The structure of the
graph influences the analysis of the equations in this setting. Indeed, some analogous
properties in the Euclidean case are not easily derived, depending on the interpolation
chosen. Therefore, as a byproduct of our study, we provide properties of the dynamics in
relation to the interpolation considered, such as positivity preservation and Lp regularity.
To the best of our knowledge this is the first result in these directions.

The paper is structured as follows. We introduce preliminary notions in Section 2
to explain the setup. Section 3 is devoted to the Nonlocal Continuity Equation (NCE)
and emphasizes the fundamental role of the flux interpolation. From there, we prove
basic properties of the NCE, highlighting analogies with and differences from the more
standard Euclidean setting. In Section 4, we prove the main result of the manuscript,
namely, the existence and uniqueness of measure solutions for the NCE. We include
velocity fields depending on the solution itself, in which case we also refer to the NCE as
a Nonlocal Conservation Law (NCL). Section 5 is focused on Lp solutions and positivity
preservation, only proven for the upwind interpolation.

2. Setup

Nonlocal graph structure. Let us fix a measure µ ∈ M+(Rd) and a measurable function
η : R2d

⧸ → [0, ∞), and set G := {(x, y) ∈ R2d
⧸ : η(x, y) > 0}. We always assume following:

(η) η is continuous, bounded and symmetric on G.
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We often refer to µ as the base measure and to η as the weight function. In this sense,
(µ, η) defines a, possibly uncountable, weighted, undirected graph. A finite graph would
correspond to the base measure µn = 1

n

∑
i δxi for a set of points {x1, x2, . . . , xn}.

Total variation distance. For two measures ρ1, ρ2 ∈ MTV(Rd), we define their total
variation distance by

∥ρ1 − ρ2∥TV = 2 sup
A∈B(Rd)

∣∣∣ρ1[A] − ρ2[A]
∣∣∣.

The factor 2 is present only for convenience since we restrict to measures with finite and
equal total variation, so that ∥ρ1 − ρ2∥TV =

∣∣ρ1 − ρ2∣∣(Rd). We equip the sets MTV(Rd)
and P(Rd) with the total variation distance.

Gradients and divergences. We recall here the notions of nonlocal gradient and divergence
on G.
Definition 2.1 (Nonlocal gradient and divergence). For any ϕ : Rd → R, we define its
nonlocal gradient ∇ϕ : G → R by

∇ϕ(x, y) = ϕ(y) − ϕ(x) for all (x, y) ∈ G.

For any Radon measure j ∈ M(G), its nonlocal divergence ∇ · j ∈ M(Rd) is defined as
the adjoint of ∇ with respect to η, i.e., for any ϕ : Rd → R continuous and vanishing at
infinity, there holds∫

Rd
ϕ d∇ · j = −1

2

∫∫
G

∇ϕ(x, y)η(x, y) dj(x, y)

= 1
2

∫
Rd

ϕ(x)
∫
Rd\{x}

η(x, y)(dj(x, y) − dj(y, x)).

In particular, for j antisymmetric, that is, j ∈ M(G) and j⊤ = −j, denoted j ∈ Mas(G),
we have ∫

Rd
ϕ d∇ · j =

∫∫
G

ϕ(x)η(x, y) dj(x, y).

With this notion of divergence, we can consider a nonlocal continuity equation (cf.
Definition 3.1 below) defined on a suitable subclass of absolutely continuous curves
denoted by ACT = AC([0, T ]; MTV(Rd)). More precisely, ACT is the set of curves from
[0, T ] to MTV(Rd) such that there exists m ∈ L1([0, T ]) with

∥ρs − ρt∥TV ≤
∫ t

s
m(r) dr, for all 0 ≤ s < t ≤ T.

3. Nonlocal Continuity Equation (NCE)

In this section, we study the nonlocal continuity equation on the graph defined by
(µ, η). First, we define the concept of measure-valued solution.
Definition 3.1 (Measure-valued solution for the NCE). A measurable pair (ρ, j) : [0, T ] →
MTV(Rd)×M(G) is a measure-valued (or simply measure) solution to the NCE, denoted
as

∂tρ + ∇ · j = 0, (NCE)
provided that, for any A ∈ B(Rd), it holds that
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(i) ρ ∈ ACT ;
(ii) (jt)t∈[0,T ] is Borel measurable and

(
t 7→ ∇ · jt[A]

)
∈ L1([0, T ]);

(iii) (ρ, j) satisfies,

ρt[A] +
∫ t

0
∇ · js[A] ds = ρ0[A] for a.e. t ∈ [0, T ];

in this case, we write (ρ, j) ∈ CE([0, T ]).

In the above definition, the absolute continuity of a measure solution ρ is ensured by
the integrability of the flux divergence. Moreover, ρ does not need to be nonnegative,
i.e., so that ρt ≥ 0 for a.e. t ∈ [0, T ], for the definition to make sense; in fact, positivity
preservation is analyzed in Section 5.

3.1. Flux interpolations. We provide a class of flux interpolations generalizing our
work in [12], where we only studied the upwind interpolation. We consider a minimal set
of assumptions on the interpolation to achieve well-posedness.

Definition 3.2 (Admissible flux interpolation). A measurable function Φ: R3 → R is
called an admissible flux interpolation provided that the following conditions hold:

(i) Φ satisfies
Φ(0, 0; v) = Φ(a, b; 0) = 0, for all a, b, v ∈ R; (3.1)

(ii) Φ is Lipschitz in its arguments in the sense that, for some LΦ > 0, any
a, b, c, d, v, w ∈ R, it holds

|Φ(a, b; w) − Φ(a, b; v)| ≤ LΦ(|a| + |b|)|w − v|; (3.2a)
|Φ(a, b; v) − Φ(c, d; v)| ≤ LΦ(|a − c| + |b − d|)|v|; (3.2b)

(iii) Φ is positively one-homogeneous in its first and second arguments, that is, for
all α > 0 and (a, b, w) ∈ R3, it holds

Φ(αa, αb; w) = αΦ(a, b; w).

Example 3.3. Here follow examples of admissible flux interpolations Φ according to
Definition 3.2.

• Upwind interpolation. One important case is given by the upwind interpolation
Φupwind defined as

Φupwind(a, b; w) = aw+ − bw− for (a, b, w) ∈ R3. (3.3)
• Mean multipliers. Another case is product interpolation Φprod, which is of the

form
Φprod(a, b; w) = ϕ(a, b)w for (a, b, w) ∈ R3,

with ϕ : R2 → R any measurable function satisfying, for some LΦ > 0,
|ϕ(a, b)| ≤ LΦ max{|a|, |b|},

|ϕ(a, b) − ϕ(c, d)| ≤ LΦ(|a − c| + |b − d|),
ϕ(αa, αb) = αϕ(a, b),
ϕ(a, b) = ϕ(b, a),
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for all α ≥ 0 and a, b, c, d ∈ R. Common choices for ϕ are as below:
– Arithmetic mean. ϕAM(a, b) := a+b

2 ;
– Minimal mean. ϕmin(a, b) := min{a, b};
– Maximal mean. ϕmax(a, b) := max{a, b}.

We note that some common choices, such as the geometric mean and the log-
arithmic mean, do not satisfy the Lipschitz condition stated above, which is
essential for the fixed-point argument we use later to establish well-posedness.
This situation may be remedied by a suitable Lipschitz regularization of those
examples, although we do not explore this possibility in the present paper.

Definition 3.4 (Admissible flux). Let Φ be an admissible flux interpolation, and let
ρ ∈ MTV(Rd) and w ∈ Vas(G) := {v : G → R : v⊤ = −v}. Furthermore, take λ ∈
M+(R2d) such that ρ ⊗ µ, µ ⊗ ρ ≪ λ (e.g., λ = |ρ| ⊗ µ + µ ⊗ |ρ|). Then, the admissible
flux F Φ[µ; ρ, w] ∈ M(G) at (ρ, w) is defined by

dF Φ[µ; ρ, w] = Φ
(d(ρ ⊗ µ)

dλ
,
d(µ ⊗ ρ)

dλ
; w

)
dλ. (3.4)

Note that because of the one-homogeneity of Φ, the expression in (3.4) is independent
of the choice of λ. The nonlocal continuity equation of Definition 3.1 with the notation
of Definition 3.4 reads

∂tρ + ∇ · F Φ[µ; ρt, vt] = 0, (NCE)
with integral form, for all A ∈ B(Rd), given by

ρt[A] +
∫ t

0
∇ · F Φ[µ; ρs, vs][A] ds = ρ0[A], for a.e. t ∈ [0, T ]. (3.5)

3.2. Basic properties. We highlight some properties of (NCE) analogous to those in
Euclidean setting, though intrinsically different due to the underlying graph structure.
The well-posedness is treated in Section 4, where we consider a more general scenario, in
particular including (NCE).

Proposition 3.5 (Integrability, support and mass preservation for the NCE). Let
ρ0 ∈ MTV(Rd) and let v : [0, T ] → Vas(G) satisfy, for some Cv > 0,∫ T

0
sup
x∈Rd

∫
Rd\{x}

|vt(x, y)|η(x, y) dµ(y) ≤ Cv. (3.6)

Let also Φ be an admissible flux interpolation and ρ : [0, T ] → MTV(Rd) be such that (3.5)
is satisfied. Then, the following properties hold:

• t 7→ ∇ · F Φ[ρt, vt][A] ∈ L1([0, T ]) (flux integrability);
• ρ ∈ L∞([0, T ]; MTV(Rd)) (time boundedness);
• ρt[Rd] = ρ0[Rd] for all t ∈ [0, T ] (mass preservation);
• ρ ∈ ACT (absolute continuity);
• if supp ρ0 ⊆ supp µ, then supp ρt ⊆ supp ρ0 for a.e. t ∈ [0, T ] (support inclusion).

Proof. We split the proof according to each item above.
Flux integrability—For all A ∈ B(Rd) and t ∈ [0, T ], we have

∇ · F Φ[µ; ρt, vt][A] = −1
2

∫∫
G

∇χA(x, y)η(x, y) dF Φ[µ; ρt, vt](x, y)
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= −1
2

∫∫
G

∇χAΦ
(d(ρt ⊗ µ)

dλ
,
d(µ ⊗ ρt)

dλ
; vt

)
η dλ.

Next, using (3.1) and (3.2a) with w = 0, symmetry of η, antisymmetry of v, and (3.6),
we estimate, for any t ∈ [0, T ], that∫ t

0

∣∣∣∇ · F Φ[µ; ρs, vs][A]
∣∣∣ ds ≤ LΦ

2

∫ t

0

∫∫
G

|vs|η
(d|ρs| ⊗ µ

dλ
+ dµ ⊗ |ρs|

dλ

)
dλ ds

≤ LΦ

∫ t

0

∫∫
G

|vs(x, y)|η(x, y) dµ(y) d|ρs|(x) ds

≤ LΦ

∫ t

0
vs |ρs|[Rd] ds, (3.7)

where vs := supx∈Rd

∫
Rd\{x} |vt(x, y)|η(x, y) dµ(y).

Time boundedness— For a.e. t ∈ [0, T ], the integral form (3.5) entails

|ρt|[Rd] ≤ |ρ0|[Rd] + LΦ

∫ t

0
vs|ρs|[Rd] ds.

Then, Gronwall’s inequality provides, for a.e. t ∈ [0, T ], the a priori bound |ρt|[Rd] ≤
|ρ0|[Rd]eLΦCv < ∞. Hence ρ ∈ L∞([0, T ]; MTV(Rd)).

Mass preservation—This is a simple consequence of ∇χRd = 0, which yields ∇ ·
F Φ[ρt, vt][Rd] = 0 for all t ∈ [0, T ]. Hence (3.5) implies that ρ is mass preserving.
We also infer the integrability of the flux from (3.7).

Absolute continuity—For any A ∈ B(Rd), we have t 7→ |∇ · F Φ[µ; ρt, vt][A]| belongs to
L1([0, T ]). Hence ρ ∈ ACT .

Support inclusion—Note that for A = Rd \ supp µ and a.e. t ∈ [0, T ], the solution ρ
satisfies

ρt[A] = ρ0[A] − 1
2

∫ t

0

∫∫
G∩A×supp µ

Φ
(d(ρs ⊗ µ)

dλ
, 0; vs

)
dλ(x, y) ds

+ 1
2

∫ t

0

∫∫
G∩supp µ×A

Φ
(

0,
d(µ ⊗ ρs)

dλ
; vs

)
dλ(x, y) ds;

thus, we get the estimate

|ρt|[A] ≤ |ρ0|[A] + LΦ

∫ t

0
|ρs|[A]vs ds,

and, by Gronwall’s inequality, we also get |ρt|[A] ≤ eCV LΦ |ρ0|[A]. We conclude by noting
that |ρ0|[A] = 0 by assumption. □

Remark 3.6. Condition (3.6) is the analogue of the weak-compressibility assumption
classically used for the continuity equation ∂tρt + ∇ · (vtρt) = 0, with vector field
v : [0, T ] × Rd → Rd (see, e.g., [1, 10]). More precisely, in the Euclidean setting, the
assumption in (3.6) takes the form ∇ · v ∈ L1([0, T ]; L∞(Rd)) and is used to control of
∥ρ∥L∞([0,T ];Lp(Rd)), for any p ∈ [1, ∞) (cf. [10, Prop II.1.]). In our setting, the structural
properties of the graph, encoded in (µ, η) and the flux interpolation Φ, require a refined
analysis involving a careful regularization argument when treating Lp solutions; we refer
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the reader to Section 5, where those questions are studied for solutions possessing a
density.

4. Nonlocal Conservation Law (NCL)

We focus here on the general case where the velocity field depends on the solution
itself. More precisely, we provide well-posedness to (NCE) for a vector field of the form

vt(x, y) = Vt[ρt](x, y) for all t ∈ [0, T ],

for some V : [0, T ] × MTV(Rd) → Vas(G). For the reader’s convenience we write the
following straightforward generalization of Definition 3.1 to what we refer to as Nonlocal
Conservation Law (NCL).

Definition 4.1 (Measure-valued solution to the NCL). Given an admissible flux inter-
polation Φ and a measurable map V : [0, T ] × MTV(Rd) → Vas(G), a curve ρ : [0, T ] →
MTV(Rd) is said to be a measure-valued (or simply measure) solution to the NCL,
denoted as

∂tρ + ∇ · F Φ[µ; ρ, V (ρ)] = 0, (NCL)
provided that, for any A ∈ B(Rd), it holds that

(i) ρ ∈ ACT ;
(ii) t 7→ ∇ · F Φ[µ; ρt, Vt(ρt)][A] ∈ L1([0, T ]);

(iii) ρ satisfies

ρt[A] +
∫ t

0
∇ · F Φ[µ; ρs, Vs(ρs)][A] ds = ρ0[A] for a.e. t ∈ [0, T ]. (4.1)

Example 4.2. An important example of a map V in Definition 4.1 is that stemming from
the convolution with an interaction kernel (or potential) K : Rd × Rd → R, which yields
the Nonlocal Nonlocal Interaction Equation (NL2IE), to which we can add an external
potential P : Rd → R. Namely, in this case, for ρ : [0, T ] → MTV(Rd), t ∈ [0, T ] and
(x, y) ∈ G, the vector field V is given by

Vt[ρt](x, y) = −∇(K ∗ ρt)(x, y) − ∇P (x, y).

When the interpolation is chosen to be the upwind one (3.3), we get the equation studied
in the optimal-transport, weak-measure setting of [12].

Our well-posedness proof of (NCL), and thus (NCE), is based on a fixed-point argument
and only applies to measures with fixed total variation, which is consistent with the
mass-preservation property from Proposition 3.5. For all M > 0, we introduce the
notation

ACM
T = AC([0, T ]; MM

TV(Rd)), MM
TV(Rd) =

{
ρ ∈ MTV : |ρ|[Rd] = M

}
.

Note that, for any ρ0, ρ1 ∈ MM
TV(Rd), we have the identity

∥ρ1 − ρ2∥TV = 2 sup
A∈B(Rd)

∣∣∣ρ1[A] − ρ2[A]
∣∣∣ = |ρ1 − ρ2|(Rd).
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Throughout this section we fix M ≥ 0, ρ0 ∈ MM
TV(Rd) and Φ an admissible flux

interpolation (cf. Definition 3.2). With any V : [0, T ] × MM
TV(Rd) → Vas(G) such that,

for some CV > 0,

sup
t∈[0,T ]

sup
ρ∈MM

TV(Rd)
sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y)|η(x, y) dµ(y) dt ≤ CV , (4.2)

we associate the solution map SV
T : ACM

T → ACM
T , defined, for t ∈ [0, T ] and A ∈ B(Rd),

by

SV
T (ρ)(t)[A] := ρ0[A] −

∫ t

0
∇ · F Φ[µ; ρs, Vs(ρs)][A] ds.

Note that (4.2) is an L∞(L∞)-type of bound for the nonlocal divergence; it is thus slightly
stronger than the similar (3.6) of L1(L∞)-type under which we have boundedness of
solutions in Proposition 3.5.

We establish well-posedness under a Lipschitz assumption on ρ 7→ V [ρ] on the space
ACT , which we endow with the distance dACT

defined by
dACT

(ρ, σ)=∥ρ − σ∥L∞([0,T ];MTV(Rd)) = sup
t∈[0,T ]

∥ρt − σt∥TV for all ρ, σ ∈ ACT .

Lemma 4.3. Let V : [0, T ] × MM
TV(Rd) → Vas(G) satisfy the uniform-compressibility

assumption (4.2) for some CV ∈ (0, ∞) and suppose that there exists a constant LV ≥ 0
such that, for all t ∈ [0, T ] and all ρ, σ ∈ MM

TV(Rd),

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y) − Vt[σ](x, y)|η(x, y) dµ(y) dt ≤ LV ∥ρ − σ∥TV. (4.3)

Then, for all ρ, σ ∈ ACM
T , the contraction estimate

dACT
(SV

T (ρ), SV
T (σ)) ≤ αTdACT

(ρ, σ),
holds for α := LΦ(MLV + CV ), where LΦ is as in (3.2).

In particular, for T > 0 such that T < 1/α, there exists a unique measure solution ρ
to (NCL) on [0, T ] such that ρ0 = ρ0.

Proof. Let ρ, σ ∈ ACM
T and let t ∈ [0, T ]. We rewrite, for s ∈ [0, T ],

∇ · F Φ[µ; ρs, Vs(ρs)][A] − ∇ · F Φ[µ; σs, Vs(σs)][A] = Is + IIs, (4.4)
where

Is = 1
2

∫∫
G

∇χA(x, y)
[
Φ
(d(σs ⊗ µ)

dλ
,
d(µ ⊗ σs)

dλ
; Vs[σs]

)

− Φ
(d(σs ⊗ µ)

dλ
,
d(µ ⊗ σs)

dλ
; Vs[ρs]

)]
η dλ,

IIs = 1
2

∫∫
G

∇χA(x, y)
[
Φ
(d(σs ⊗ µ)

dλ
,
d(µ ⊗ σs)

dλ
; Vs[ρs]

)

− Φ
(d(ρs ⊗ µ)

dλ
,
d(µ ⊗ ρs)

dλ
; Vs[ρs]

)]
η dλ.
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For the fist term, we apply the Lipschitz assumptions (3.2a) on Φ and (4.3) on V , and
use the antisymmetry of Vt(ρt) and Vt(σt) and the symmetry of η (cf. (η)) to obtain∫ t

0
|Is| ds ≤ LΦ

2

∫ t

0

∫∫
G

|Vs[σs] − Vt[ρs]| η (d(|σs| ⊗ µ) + d(µ ⊗ |σs|)) ds

≤ LΦ

∫ t

0

∫∫
G

∣∣Vs[σs] − Vt[ρs]
∣∣(x, y)η(x, y) d(|σs| ⊗ µ)(x, y) ds

≤LΦ sup
s∈[0,t]

|σs|[Rd]
∫ t

0
sup
x∈Rd

∫
Rd\{x}

∣∣Vs[σs]−Vt[ρs]
∣∣(x, y)η(x, y)dµ(y)ds

≤ LΦLV MT dACT
(ρ, σ).

As for IIs, we use the Lipschitz assumption (3.2b) on Φ, again the antisymmetry of
Vt(ρt) and the symmetry of η (recall (η)), and apply the compressibility of V given
in (4.2) to get∫ t

0
|IIs| ds ≤ LΦ

2

∫ t

0

∫∫
G

|Vs[ρs]|(x, y)
(∣∣∣∣d(σs ⊗ µ)

dλ
(x, y) − d(ρs ⊗ µ)

dλ
(x, y)

∣∣∣∣
+
∣∣∣∣d(µ ⊗ σs)

dλ
(x, y) − d(µ ⊗ ρs)

dλ
(x, y)

∣∣∣∣) η(x, y) dλ(x, y) ds

≤ LΦ
2

∫ t

0

∫∫
G

|Vs[ρs]|η(d(|σs − ρs| ⊗ µ) + d(µ ⊗ |σs − ρs|)) ds

≤ LΦCV TdACT
(ρ, σ).

All in all, taking the suprema over Borel sets and over time in (4.4) gives

dACT

(
SV

T (ρ), SV
T (σ)

)
≤ LΦ(MLV + CV )TdACT

(ρ, σ) =: αTdACT
(ρ, σ).

The existence and uniqueness when T < 1/α is a direct consequence of the Banach
fixed-point theorem in the metric space ACM

T applied to SV
T . □

Remark 4.4. For (NCE), one has to control only the term IIs, and so the condition in
(4.2) is enough to get the contraction estimate and well-posedness.

Theorem 4.5 (Well-posedness for (NCL)). Let V : [0, T ] × MM
TV(Rd) → Vas(G) and

suppose there are constants CV , LV > 0 so that, for all t ∈ [0, T ] and all ρ, σ ∈ MM
TV(Rd),

sup
t∈[0,T ]

sup
ρ∈MM

TV(Rd)
sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y)|η(x, y) dµ(y) ≤ CV ,

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y) − Vt[σ](x, y)|η(x, y) dµ(y) ≤ LV ∥ρ − σ∥T V .

Then, there exists a unique measure solution ρ to (NCL) such that ρ0 = ρ0.

Proof. Let α be as in Lemma 4.3 and let a = αT . If a < 1, then the result is direct by
applying the well-posedness from Lemma 4.3.

Suppose now a ≥ 1, write k the integer part of a and let τ = 1/(2α). Then, by
Lemma 4.3, we know there exists a unique measure solution to (NCL) on [0, τ ]; let us call
this solution ρ1 and observe that ρ1 ∈ AC0,τ , where AC0,τ = AC([0, τ ]; MM

TV(Rd)). Again,
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applying Lemma 4.3 yields the existence and uniqueness of ρ2 ∈ ACτ,2τ , the solution to
(NCL) on [τ, 2τ ]. By proceeding iteratively, we construct a sequence of solutions

ρi ∈ AC(i−1)τ,iτ for all i ∈ {1, . . . , k}, ρk+1 ∈ ACkτ,T .

We now define the curve ρ ∈ AC0,T = ACT by{
ρt = ρi

t for all t ∈ [(i − 1)τ, iτ) and i ∈ {1, . . . , k},

ρt = ρk+1
t for all t ∈ [kτ, T ],

which, by construction, is the unique measure solution to (NCL). □

We now apply Theorem 4.5 to the nonlocal interaction equation studied in [12],
i.e., to the velocity field v as in Example 4.2, but for a more general admissible flux
interpolation Φ. This provides existence and uniqueness of measure solutions to (NL2IE).

Corollary 4.6 (Well-posedness for (NL2IE)). Assume that η satisfies

sup
x∈Rd

∫
Rd

f(x, y)η(x, y) dµ(y) < ∞ (4.5)

for some nonnegative measurable function f : Rd × Rd → R. Let K : Rd × Rd → R and
P : Rd → R be such that there exist constants LK , LP > 0 for which

|K(y, z) − K(x, z)| ≤ LKf(x, y), |P (y) − P (x)| ≤ LP f(x, y), (4.6)
for all x, y, z ∈ Rd. Then, (NL2IE), whose velocity V : [0, T ] × MM

TV(Rd) → Vas(G) we
recall is defined for t ∈ [0, T ] and σ ∈ MM

TV(Rd) by
Vt[σ](x, y) = −∇K ∗ σ(x, y) − ∇P (x, y) for all (x, y) ∈ G, (4.7)

has a unique measure solution ρ such that ρ0 = ρ0.

Proof. We first check that, indeed, V as given in (4.7) satisfies (4.2).
|Vt[ρ](x, y)| = |∇(K ∗ ρ + P )(x, y)| = |K ∗ ρ(y) + P (y) − K ∗ ρ(x) − P (x)|

≤
∫
Rd

|K(y, z) − K(x, z)| d|ρ|(z) + |P (y) − P (x)|

≤ LK

∫
Rd

f(x, y) d|ρ|(z) + LP f(x, y) = (MLK + LP )f(x, y);

hence we obtain

sup
t∈[0,T ]

sup
ρ∈MM

TV(Rd)
sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y)|η(x, y) dµ(y)

≤ (MLK + LP ) sup
x∈Rd

∫
Rd\{x}

f(x, y)η(x, y) dµ(y) < ∞,

which is (4.2). Then, we are only left with showing (4.3). For all ρ, σ ∈ MM
TV(Rd),

t ∈ [0, T ] and (x, y) ∈ G, we have
|Vt[ρ](x, y) − Vt[σ](x, y)| = |∇(K ∗ ρt − K ∗ σt)(x, y)|

≤
∫
Rd

|K(y, z) − K(x, z)| d|ρt(z) − σt(z)|

≤ LK∥ρt − σt∥T V f(x, y),
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which yields (4.3) and ends the proof. □

Note that choosing the function f in the above corollary to be

f(x, y) = |x − y| ∨ |x − y|2 for all x, y ∈ Rd

shows that [12, Assumption (K3)], needed for the existence result on weak solutions
to (NL2IE) in [12, Theorem 3.15], is stronger than that in (4.6) on K. On the other
hand, the condition (4.5), resulting from this choice of f , is a stronger assumption
on η than [12, Assumption (A1)], again needed in Theorem [12, Theorem 3.15]. Our
well-posedness result in Corollary 4.6 thus holds for more general interaction potentials
but less general weight functions than our weak existence result in Theorem [12, Theorem
3.15]. Another interesting example of f which can be chosen in Corollary 4.6 is a constant
function, which only imposes K to be a bounded function; in this case, the resulting
condition (4.5) on η is even more restrictive, albeit still reasonable.

Remark 4.7 (The case when µ is atomic). Let I ⊆ N be not necessarily finite. Consider
{xi}i∈I ⊂ Rd, {mi}i∈I ⊂ [0, ∞) and µ ∈ M+(Rd) such that

µ =
∑
i∈I

miδxi .

Let V : [0, T ] × MM
TV(Rd) → Vas(G) satisfy the hypotheses of Theorem 4.5, that is, there

exist CV , LV > 0 such that, for all t ∈ [0, T ] and all ρ, σ ∈ M+
TV(Rd), we have

sup
t∈[0,T ]

sup
ρ∈MM

TV(Rd)
sup
x∈Rd

n∑
j∈I

xj ̸=x

mj |Vt[ρ](x, xj)|η(x, xj) ≤ CV ,

sup
x∈Rd

n∑
j∈I:xk ̸=x

mj |Vt[ρ](x, xj) − Vt[σ](x, xj)|η(x, xj) ≤ LV ∥ρ − σ∥T V .

In this case, we know from Theorem 4.5 that a unique solution ρ exists on [0, T ] such
that ρ0 = ρ0. If supp ρ0 ⊆ supp µ, then Proposition 3.5 entails that the solution stays
supported in supp µ, in particular, ρt ≪ µ for a.e. t ∈ [0, T ]. If moreover Φ is jointly
antisymmetric, i.e., Φ(a, b; −v) = −Φ(b, a; v) for any a, b, v ∈ R, then (4.1) rewrites, for
any A ∈ B(Rd) and a.e. t ∈ [0, T ], as

ρt[A] = ρ0[A] −
∑
i ̸=j

∫ t

0
Φ(ri(t)mj , mirj(t), Vs[ρs](xi, xj))η(xi, xj) ds.

5. Lp solutions and positivity preservation

Let ρ0 ∈ MM
TV(Rd) be such that ρ0 ≪ µ. In this section, we consider curves in

AC([0, T ]; L1
µ(Rd)) and equip it with the distance

∥ρ1 − ρ2∥L∞([0,T ];L1
µ(Rd)) = sup

t∈[0,T ]

∫
Rd

|ρ1(x) − ρ2(x)| dµ(x) for all ρ1, ρ2 ∈ L1
µ(Rd).

The advantage of the L1
µ setting is that we are able to show positivity preservation of

solutions when Φ = ΦUpwind, as well as Lp
µ regularity with p ∈ (1, ∞).



14 A. ESPOSITO, F. S. PATACCHINI, AND A. SCHLICHTING

In this setting, we choose λ = µ ⊗ µ so that the admissible flux from Definition 3.2 is
given by

dF Φ[µ; ρ, w](x, y) = Φ(ρ(x), ρ(y); w(x, y)) d(µ ⊗ µ)(x, y),
for any ρ ∈ L1

µ(Rd), w ∈ Vas(G) and (x, y) ∈ G. Assuming that Φ is jointly antisymmetric,
i.e., Φ(a, b; −v) = −Φ(b, a; v) for any a, b, v ∈ R, the nonlocal divergence of F Φ[µ; ρ, v] is
given by

∇ · F [µ; ρ, v](x) =
∫
Rd\{x}

Φ(ρ(x), ρ(y); v(x, y))η(x, y) dµ(y) for µ-a.e. x ∈ Rd;

properties stated in Proposition 3.5 still hold. As in Section 4, the velocity field may
depend on the configuration itself:

vt(x, y) = Vt[ρt](x, y) for all t ∈ [0, T ] and (x, y) ∈ G,

for some V : [0, T ] × L1
µ(Rd) → Vas(G). The solution map is, for µ-a.e. x ∈ Rd, given by

ρt(x) = ρ0(x) −
∫ t

0
∇ · F [µ; ρs, Vs[ρs]](x) ds. (5.1)

Fix ρ0 ∈ L1
µ,M (Rd). The procedure followed in Section 4 provides a well-posedness

result, where, for M > 0 fixed, we set L1
µ,M (Rd) :=

{
ρ ∈ L1

µ(Rd) :
∫
Rd |ρ(x)| dµ(x) = M

}
:

Theorem 5.1 (Well-posedness for (NCL)). Let V : [0, T ] × L1
µ,M (Rd) → Vas(G) and

suppose there are constants CV , LV > 0 so that, for all t ∈ [0, T ] and all ρ, σ ∈ L1
µ,M (Rd),

sup
t∈[0,T ]

sup
ρ∈L1

µ,M (Rd)
sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y)|η(x, y) dµ(y) ≤ CV ,

sup
x∈Rd

∫
Rd\{x}

|Vt[ρ](x, y) − Vt[σ](x, y)|η(x, y) dµ(y) ≤ LV ∥ρ − σ∥L1
µ(Rd).

Then, there exists a unique measure solution ρ to (NCL) satisfying (5.1) such that ρ0 = ρ0.

As we now work with densities (with respect to µ), we are able to prove positivity
preservation for (NCE) in the case of the upwind flux interpolation; the proof of the
result follows the strategy used in [6].

Proposition 5.2 (Positivity preservation for (NCE)). Let ρ0 be nonnegative everywhere
and let the assumptions in Theorem 5.1 hold. Furthermore, assume that Φ ≡ ΦUpwind.
Then, the solution ρ to (NCE) is nonnegative a.e., that is, ρt(x) ≥ 0 for a.e. t ∈ [0, T ]
and µ-a.e. x ∈ Rd.

Proof. As ρ is absolutely continuous in time, for a.e. t ∈ [0, T ] and µ-a.e. x ∈ Rd, it holds

∂tρt(x) = −∇ · F Φ[µ; ρt, vt](x)

= −
∫
Rd\{x}

vt(x, y)+η(x, y)ρt(x) dµ(y)

+
∫
Rd\{x}

vt(x, y)−η(x, y)ρt(y) dµ(y).
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We denote by a, A : [0, T ] → R the maps defined by

a(t) := sup
x∈Rd

∫
Rd\{x}

|vt(x, y)−|η(x, y) dµ(y), A(t) := exp
(

−
∫ t

0
a(s) ds

)
,

and we set ρ̃t(x) = A(t)ρt(x) for a.e. t ∈ [0, T ] and µ-a.e. ∈ Rd. In turn, by using
v+ = v + v−, we obtain, for µ-a.e. x ∈ Rd,

∂tρ̃t(x) = A′(t)ρt(x) + A(t)∂tρt(x)
= −A(t)a(t)ρt(x) − A(t)∇ · F Φ[µ; ρt, vt](x)

= −a(t)ρ̃t(x) − A(t)
∫
Rd\{x}

vt(x, y)+η(x, y)ρt(x) dµ(y)

+ A(t)
∫
Rd\{x}

vt(x, y)−η(x, y)ρt(y) dµ(y)

= −a(t)ρ̃t(x) −
∫
Rd\{x}

vt(x, y)η(x, y)ρ̃t(x) dµ(y)

−
∫
Rd\{x}

vt(x, y)−η(x, y)ρ̃t(x) dµ(y)

+
∫
Rd\{x}

vt(x, y)−η(x, y)ρ̃t(y) dµ(y);

reordering the terms, we get

∂tρ̃t(x) +
∫
Rd\{x}

vt(x, y)−(ρ̃t(x) − ρ̃t(y))η(x, y) dµ(y)

+ ρ̃t(x)
(

a(t) +
∫
Rd\{x}

vt(x, y)η(x, y) dµ(y)
)

= 0,

(5.2)

noting that, by definition of a, we have

a(t) +
∫
Rd\{x}

v(x, y)η(x, y) dµ(y) ≥ 0.

Let us prove that any supersolution of (5.2) is a.e. nonnegative. Indeed, if this were
true, then we would have that the supersolution ρε

t := ρ̃t + εt = a(t)ρt + εt ≥ 0 µ-a.e.,
for any ε > 0 and a.e. t ∈ [0, T ]; and, letting ε → 0, we then would obtain ρt ≥ 0 for a.e.
t ∈ [0, T ]. By contradiction, we thus assume that a supersolution to (5.2), still denoted
by ρ̃, is such that there exists τ ∈ (0, T ] with

inf
y∈Rd

ρ̃τ (y) < 0. (5.3)

Let (τk)k ⊂ (0, T ] be defined as τk = τ + 1/k for all k > 0 large enough. By the time
continuity of ρ̃ from [0, T ] to L1

µ(Rd), we know that, up to a subsequence, ρ̃τk
→ ρ̃τ

pointwise as k → ∞. Furthermore, let (xt
n)n be a minimizing sequence for ρ̃t for all

t ∈ [0, T ]. Then,
ρ̃τk

(xτ
n) −−−→

k→∞
ρ̃τ (xτ

n) −−−→
n→∞

inf
y∈Rd

ρ̃τ (y),
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and similarly, whenever τ > 0, for the sequence (τ ′
k)k ⊂ (0, T ] defined by τ ′

k = τ − 1/k
for all k > 0 large enough. Hence the set ∆ ⊂ (0, ∞), given by

∆ =
{

δ > 0 : ∀ t ∈ [0, T ] ∩ (τ − δ, τ + δ), inf
y∈Rd

ρ̃t(y) < 0
}

,

is nonempty and δ∗ := sup ∆ > 0. Moreover, δ∗ ≤ τ since, by assumption, ρ̃0 ≥ 0.
Setting τ∗ := τ − δ∗ ≥ 0 and τ∗ := min{T, τ + δ∗}, we have

inf
y∈Rd

ρ̃τ∗(y) ≥ 0 and inf
y∈Rd

ρ̃t(y) < 0 for all t ∈ (τ∗, τ∗).

For all h > 0 such that τ∗ + h < τ∗, we have

lim
n→∞

ρ̃τ∗+h(xτ∗+h
n ) < 0 ≤ lim

n→∞
ρ̃τ∗(xτ∗

n ) ≤ lim inf
n→∞

ρ̃τ∗(xτ∗+h
n ),

since xτ∗+h
n is minimising for ρ̃τ∗+h but not necessarily for ρ̃τ∗ , and so

lim sup
n→∞

(
ρ̃τ∗+h(xτ∗+h

n ) − ρ̃τ∗(xτ∗+h
n )

)
≤ 0. (5.4)

We find that, for t∗ = τ∗ + h,

lim sup
n→∞

∫ τ∗+h

τ∗

∫
Rd\{xt∗

n }
vt∗(xt∗

n , y)−
(
ρ̃t∗(xt∗

n ) − ρ̃t∗(y)
)
η(xt∗

n , y) dµ(y) dt ≤ 0,

lim sup
n→∞

∫ τ∗+h

τ∗
ρ̃t∗(xt∗

n )
(

a(t∗) +
∫

vt∗(xt∗
n , y)η(xt∗

n , y) dµ(y)
)

≤ 0.

Integrating (5.2) between (τ∗, τ∗ + h) and taking the lim inf as n → ∞, we arrive at

lim inf
n→∞

(
ρ̃τ∗+h(xτ∗+h

n ) − ρ̃τ∗(xτ∗+h
n )

)
≥ 0,

which contradicts (5.4). Hence the existence of τ such that (5.3) holds is false and every
supersolution to (5.2) must be a.e. nonnegative, which concludes the proof. □

We are also able to prove Lp regularity of solutions for (NCE):

Proposition 5.3 (Lp regularity for (NCE)). Suppose that dµ
dx ∈ L∞(Rd) and ρ0 is

nonnegative everywhere with ρ0 ∈ Lp(Rd) for some p ∈ (1, ∞). Consider any measurable
pair (ρ, v) : [0, T ] → L1

µ,M (Rd) × Vas(G) satisfying (5.1), with Φ ≡ ΦUpwind. Assume that
η is homogeneous in space, that is,

η(x, y) = η(x − y), for any (x, y) ∈ G. (5.5)
Assume there exists a constant Cv > 0 such that v : [0, T ] → Vas(G) satisfies the following
uniform translational bound:

lim sup
ε→0

∫ T

0
sup
y∈Rd

∫
Rd

sup
h,w∈Bε(0)

((vt(x + h, y + w))−η(x, y))p dy ≤ Cv. (5.6)

Let ρ be the solution to (NCE). Then, ρt is a density with respect to the Lebesgue measure
and ρt ∈ L1

µ,M (Rd) ∩ Lp(Rd) for all t ∈ [0, T ]. Furthermore, for all t ∈ [0, T ], it holds

sup
t∈[0,T ]

∥ρt∥p
Lp(Rd) ≤

(
∥ρ0∥p

Lp(Rd) + C̃vT
)

exp
(

T

q

)
, (5.7)
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with C̃v = Cv
p

(
pM

∥∥∥dµ
dx

∥∥∥
L∞

)p
.

Proof. Let ν be a standard mollifier, i.e., a nonnegative and even function in C∞
c (Rd)

(the set of smooth, compactly supported functions defined on Rd) such that
∫
Rd ν dx = 1

and supp ν = B1(0) := {x ∈ Rd : ∥x∥ = 1}. Fix ε > 0 and write νε = ε−dν(·/ε). Also,
for any z ∈ Rd, define the translation operator τ z : Rd → Rd by τ z(h) := h − z. In
particular, set the translated measures ρz

t := τ z
#ρt and µz := τ z

#µ, where # stands for the
measure-theoretic pushforward. We use the following interplay between translation and
convolution: for any f ∈ Cb(Rd) (the set of continuous and bounded functions defined on
Rd), we have f ∗ νε ∈ C∞

b (Rd), i.e., f ∗ νε ∈ Cb(Rd) and f ∗ νε is smooth, and∫∫
Rd×Rd

f(h)νε(z) dρz
t (h) dz =

∫∫
Rd×Rd

f(h − z)νε(z) dρt(h) dz

=
∫
Rd

(νε ∗ f)(h) dρt(h)

=
∫∫

Rd×Rd
νε(h − z)f(z) dz dρt(h)

=
∫∫

Rd×Rd
f(z)νε(z − h) dρt(h) dz

=
∫
Rd

f(z)ρε
t (z) dz.

In particular, for f ≡ (ρε
t )p−1 with p ≥ 1 and all t ∈ [0, T ], we obtain∫∫

Rd×Rd
ρε

t (h)p−1νε(z) dρz
t (h) dz =

∫
Rd

ρε
t (z)p dz = ∥ρε

t ∥p
Lp(Rd).

Let ρε = ρt ∗ νε be the smoothed solution satisfying

∂tρ
ε
t +

(
∇ · F Φ) ∗ νε = 0,

where ((∇ · F Φ) ∗ νε)(x) =
∫
Rd νε(x − z) d∇ · F Φ(z) for all x ∈ Rd. We can compute the

time derivative of the Lp norm of ρε: for a.e. t ∈ [0, T ], use (5.5) to get
d
dt

∫
Rd

|ρε
t |p dx = p

∫
Rd

ρε
t (x)p−1∂tρ

ε
t (x) dx

= −p

∫
Rd

ρε
t (x)p−1(νε ∗ ∇ · F Φ)(x) dx

= p

2

∫∫
G

∇(ρε
t )p−1 ∗ νεΦ(ρt(x), ρt(y); vt)η dµ(x) dµ(y)

= p

2

∫
Rd

∫∫
G

∇(ρε
t )p−1(x − z, y − z)νε(z)vt(x, y)+η(x, y) dρt(x) dµ(y) dz

− p

2

∫
Rd

∫∫
G

∇(ρε
t )p−1(x − z, y − z)νε(z)vt(x, y)−η(x, y) dµ(x) dρt(y) dz

= −p

∫
Rd

∫∫
G

∇(ρε
t )p−1(x − z, y − z)νε(z)vt(x, y)−η(x, y) dµ(x) dρt(y) dz

= −p

∫
Rd

∫∫
G

∇(ρε
t )p−1(h, w)νε(z)vt(z+h, z+w)−η(h, w)dµz(h)dρz

t (w)dz
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≤ p

∫
Rd

∫∫
G
(ρε

t )p−1(h)νε(z)vt(z+h, z+w)−η(h, w)dµz(h)dρz
t (w)dz =: I.

To estimate I, we use the following variant of Young’s inequality: for p ∈ (1, ∞) and
a, b ∈ (0, ∞), there holds

ap−1b ≤ ap

q
+ bp

p
, where q = p

p − 1 . (5.8)

Due to (5.6), for some ε0 > 0 sufficiently small, for all ε ∈ (0, ε0) and a.e. t ∈ [0, T ], the
function vε

t : G → R, defined as
vε

t (x, y) := sup
h,w∈Bε(0)

(vt(x + h, y + w))− ,

satisfies, for some Cε0
v > 0, the bound

sup
ε∈(0,ε0)

∫ T

0
sup
x∈Rd

∫
Rd\{x}

(vε
t (x, y)η(x, y))p dy ≤ Cε0

v .

Using the bound above, Hölder’s inequality and (5.8), we get, for a.e. t ∈ [0, T ],

I ≤ p

∥∥∥∥dµ

dx

∥∥∥∥
L∞

∫
Rd

(ρε
t )p−1(h)

∫
Rd\{h}

∫
Rd

νε(z)vε
t (h, w)η(h, w) dρz

t (w) dz dh

≤ p

∥∥∥∥dµ

dx

∥∥∥∥
L∞

[(∫
Rd

|ρε
t (h)|p dh

) p−1
p

×

×
(∫

Rd

∣∣∣∣∣
∫
Rd\{h}

∫
Rd

νε(z)vε
t (h, w)η(h, w) dρz

t (w) dz

∣∣∣∣∣
p

dh

) 1
p


≤ p

∥∥∥∥dµ

dx

∥∥∥∥
L∞

∥ρε
t ∥p−1

Lp

(∫
Rd

∣∣∣∣∣ sup
w∈Rd

vε
t (h, w)η(h, w)

∫
Rd\{h}

∫
Rd

νε(z) dρz
t (w) dz

∣∣∣∣∣
p

dh

) 1
p

≤ 1
q

∥ρε
t ∥p

Lp + 1
p

(
p

∥∥∥∥dµ

dx

∥∥∥∥
L∞

ρ0[Rd]
)p

sup
w∈Rd

∫
Rd

|vε
t (h, w)η(h, w)|p dh.

In turn, we infer
sup

t∈[0,T ]
∥ρε

t ∥p
Lp ≤

(
∥ρ0∥p

Lp(Rd) + C̃vT
)

exp
(

T

q

)
,

where C̃v = Cv
p

(
p
∥∥∥dµ

dx

∥∥∥
L∞

ρ0[Rd]
)p

. The above inequality ends the proof since, up to
a subsequence, we deduce ρε

t ⇀ ρt in Lp(Rd) for any t ∈ [0, T ], and the stability
estimate (5.7) follows from the arbitrariness of ε0. □

Acknowledgements. The authors are deeply grateful to Prof. Dejan Slepčev (Carnegie
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